16.如圖,四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=$\frac{π}{2}$,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點(diǎn).
(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于$\frac{π}{3}$,求二面角D-PB-A平面角的余弦值.

分析 (1)取PC中點(diǎn)F,連結(jié)EF、BF,推導(dǎo)出四邊形ABFE為平行四邊形,從而AE∥BF,由此能證明AE∥平面PBC.
(2)AE與直線BC所成角為$\frac{π}{3}$,延長(zhǎng)BA一倍到H,連結(jié)DH,再作HG⊥BP,連結(jié)DG,∠DGH是二面角D-PB-A的平面角,由此能求出二面角D-PB-A平面角的余弦值.

解答 證明:(1)取PC中點(diǎn)F,連結(jié)EF、BF,
∴△PCD中,EF$\underset{∥}{=}$$\frac{1}{2}CD$,AB$\underset{∥}{=}$$\frac{1}{2}CD$,
∴EF$\underset{∥}{=}$AB,
∴四邊形ABFE為平行四邊形,
∵AE∥BF,AE?平面PBC,BF?平面PBC,
∴AE∥平面PBC.
解:(2)AE與直線BC所成角為$\frac{π}{3}$,$∠FBC=\frac{π}{3}$,
∴BP=$\sqrt{3}$,∴PA=$\sqrt{2}$,
延長(zhǎng)BA一倍到H,連結(jié)DH,再作HG⊥BP,連結(jié)DG,
則∠DGH是二面角D-PB-A的平面角,
DH=1,F(xiàn)G×$\sqrt{3}=2×\sqrt{2}$,HG=$\frac{2\sqrt{2}}{\sqrt{3}}$,
∴tan∠DGH=$\frac{DH}{HG}=\frac{\sqrt{3}}{2\sqrt{2}}=\frac{\sqrt{6}}{4}$,
∴cos∠DGH=$\frac{2\sqrt{22}}{11}$$\frac{2\sqrt{11}}{11}$.
∴二面角D-PB-A平面角的余弦值為$\frac{2\sqrt{22}}{11}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=x2+ax+3在區(qū)間(1,2)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-4]B.[-2,+∞)C.[-4,-2]D.(-∞,-4]∪[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,平面ABC⊥平面BCDE,BC∥DE,$BC=\frac{1}{2}DE=2$,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點(diǎn).
(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點(diǎn)P為棱AD的三等分點(diǎn)(近A),平面PMC與平面ABC所成銳二面角的余弦值為$\frac{{\sqrt{39}}}{13}$,求棱AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在多面體ABC-DEFG中,平面ABC∥平面DEFG,AC∥GF,且△ABC是邊長(zhǎng)為2的正三角形,DEFG是邊長(zhǎng)為4的正方形,M,N分別是AD,BE的中點(diǎn),則MN=( 。
A.$\sqrt{7}$B.4C.$\sqrt{19}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-1|+|x-2|.
(1)求證:f(x)≥1;
(2)若方程f(x)=$\frac{{a}^{2}+2}{\sqrt{{a}^{2}+1}}$有解,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個(gè)空間幾何體的三視圖如圖所示,則幾何體的體積為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為$\sqrt{3}$,且∠AA1C1為銳角.
(I) 求證:AA1⊥BC1;
(Ⅱ)求銳二面角B-AC-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示為某幾何體的三視圖,其中正視圖和左視圖都是腰長(zhǎng)為1的等腰直角三角形,該幾何體的體積為V1,其外接球的體積為V2,則$\frac{{V}_{2}}{{V}_{1}}$的值為( 。
A.$\sqrt{3}$πB.2$\sqrt{3}$πC.3$\sqrt{3}$πD.$\frac{3\sqrt{3}π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在(1+x+x2)(x-$\frac{1}{x}$)6的展開式中,x2的系數(shù)為-5 (結(jié)果用數(shù)字表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案