4.如圖,在多面體ABC-DEFG中,平面ABC∥平面DEFG,AC∥GF,且△ABC是邊長(zhǎng)為2的正三角形,DEFG是邊長(zhǎng)為4的正方形,M,N分別是AD,BE的中點(diǎn),則MN=(  )
A.$\sqrt{7}$B.4C.$\sqrt{19}$D.5

分析 取BD中點(diǎn)P,連結(jié)MP,NP,利用余弦定理,求出MN.

解答 解:如圖,取BD中點(diǎn)P,連結(jié)MP,NP,
則MP∥AB,NP∥DE,$MP=\frac{1}{2}AB=1$,$NP=\frac{1}{2}DE=2$,
又∵AC∥GF,∴AC∥NP,∵∠CAB=60°,∴∠MPN=120°,
∴$MN=\sqrt{M{P^2}+N{P^2}-2×MP×NP×cos120°}=\sqrt{1+4-2×1×2×({-\frac{1}{2}})}=\sqrt{7}$.
故選A.

點(diǎn)評(píng) 本題考查平面與平面平行,考查余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則點(diǎn)D到平面ACD1的距離為(  )
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在三棱柱ABC-A1B1C1中,底面邊長(zhǎng)與側(cè)棱長(zhǎng)均等于2,且E為CC1的中點(diǎn),則點(diǎn)C1到平面AB1E的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在三棱錐P-AMC中,AC=AM=PM,AM⊥AC,PM⊥平面AMC,B,D分別為CM,AC的中點(diǎn).
(Ⅰ)在PD上確定一點(diǎn)N,使得直線PM∥平面NAB,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面NAB和平面PAC所成銳二面角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是邊長(zhǎng)為a的菱形,∠BAD=120°,PA=b.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)設(shè)AC與BD交于點(diǎn)O,M為OC的中點(diǎn),若點(diǎn)M到平面POD的距離為$\frac{1}{4}b$,求a:b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD為菱形,點(diǎn)F在AA1上,∠DAB=120°,AA1=AB=3AF=3,$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}D}$(0<λ<1).
(1)若CE∥平面BDF,求λ的值;
(2)求平面CDE與平面BDF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=$\frac{π}{2}$,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點(diǎn).
(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于$\frac{π}{3}$,求二面角D-PB-A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,直三棱柱ABC-A′B′C′,E,F(xiàn),G分別是A′C′,BC與B′C′的中點(diǎn),且AA′=$\sqrt{3}$,BC=2,AC=4.平面ABGE⊥平面BCC′B′.
(Ⅰ)求證:AB⊥BC;
(Ⅱ)求平面ABE與平面EFC′所成角的平面角的余弦值的絕對(duì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,x),且$\overrightarrow{a}$⊥$\overrightarrow$.
(Ⅰ)求(2$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)的值;
(Ⅱ)若m$\overrightarrow{a}$+$\overrightarrow$(m為實(shí)數(shù))與$\overrightarrow{a}$-2$\overrightarrow$平行,求|2m$\overrightarrow{a}$+$\overrightarrow$|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案