數(shù)列{an}中,a1=3,a2=6,且an+1=an+an+2,則a2012=
6
6
分析:由題中的遞推公式可以求出數(shù)列的前幾項(xiàng),通過(guò)歸納、猜想,得出周期性,進(jìn)而得正確結(jié)果.
解答:解:在數(shù)列{an}中,a1=3,a2=6,又an+2=an+1-an;
故a3=a2-a1=6-3=3,a4=a3-a2=3-6=-3,
a5=a4-a3=-3-3=-6,a6=a5-a4=-6+3=-3,
a7=a6-a5=-3+6=3,a8=a7-a6=3+3=6,…
由以上知:數(shù)列每六項(xiàng)后會(huì)出現(xiàn)相同的循環(huán),
所以a2012=a2=6.
故答案為:6
點(diǎn)評(píng):本題考查數(shù)列的遞推公式的應(yīng)用,利用數(shù)列的周期性是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=-60,an+1-an=3,(1)求數(shù)列{an}的通項(xiàng)公式an和前n項(xiàng)和Sn(2)問(wèn)數(shù)列{an}的前幾項(xiàng)和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,對(duì)?n∈N*,an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•長(zhǎng)寧區(qū)一模)如果一個(gè)數(shù)列{an}對(duì)任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項(xiàng)和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習(xí)冊(cè)答案