12.在四棱錐A-BCDE中,底面BCDE為菱形,側(cè)面ABE為等邊三角形,且側(cè)面ABE⊥底面BCDE,O,F(xiàn)分別為BE,DE的中點.
(I)求證:AO⊥CD;
(II)求證:平面AOF⊥平面ACE.

分析 (I)由等邊三角形知識得AO⊥BE,利用面面垂直的性質(zhì)得出AO⊥平面BCDE,故而AO⊥CD;
(II)連結(jié)BD,由菱形性質(zhì)得出CE⊥BD,又AO⊥平面BCDE,故AO⊥CE,由中位線性質(zhì)得BD∥EF,故而CE⊥平面AOF,所以平面AOF⊥平面ACE.

解答 證明:(Ⅰ)因為△ABE 為等邊三角形,O 為BE 的中點,
所以AO⊥BE.又因為平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,AO?平面ABE,
所以AO⊥平面BCDE.又因為CD?平面BCDE,
所以AO⊥CD.
(Ⅱ)連結(jié)BD,因為四邊形BCDE 為菱形,
所以CE⊥BD.
因為O,F(xiàn) 分別為BE,DE 的中點,
所以OF∥BD,所以CE⊥OF.
由(Ⅰ)可知,AO⊥平面BCDE.
因為CE?平面BCDE,所以AO⊥CE.
因為AO∩OF=O,所以CE⊥平面AOF.
又因為CE?平面ACE,
所以平面AOF⊥平面ACE.

點評 本題考查了線面垂直,面面垂直的判定,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.△ABC中,CA=1,CB=2,∠C=60°,則AB=$\sqrt{3}$,∠A=90°,S△ABC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.直線x+y+3=0與直線x-2y+3=0的交點坐標為( 。
A.(-3,0)B.(-2,-3)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=(x2-1)(x2+ax+b)的圖象關于直線x=3對稱,則函數(shù)f(x)的值域為[-36,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.△ABC中,已知AB=2,BC=4,∠B的平分線BD=$\sqrt{6}$,則AC邊上的中線BE=$\frac{\sqrt{31}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.集合M={a|$\frac{4}{1-a}$∈Z,a∈N*}用列舉法表示為{2,3,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如果某射手每次射擊擊中目標的概率為0.74,每次射擊的結(jié)果相互獨立,那么他在10次射擊中,最有可能擊中目標幾次( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-$\frac{2}{a}$x+2+b滿足對任意的實數(shù)x都有f(1-x)=f(1+x),且f(x)的值域為[1,+∞)
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上為單調(diào)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=x2+3x+2在區(qū)間[-5,5]上的最大值為42.

查看答案和解析>>

同步練習冊答案