設(shè)點(diǎn)P是雙曲線=1右支上一點(diǎn),F是該雙曲線的右焦點(diǎn),Q是PF的中點(diǎn),O為坐標(biāo)原點(diǎn),且|OQ|=4,則點(diǎn)P到該雙曲線右準(zhǔn)線的距離為
A.
B.
C.2
D.6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-1-2蘇教版 蘇教版 題型:044
設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值,試寫出雙曲線=1具有類似特性的性質(zhì)并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市2012屆高三第一次高考模擬數(shù)學(xué)文科試題 題型:013
設(shè)點(diǎn)P是雙曲線=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1、F2分別是雙曲線的左、右焦點(diǎn),且|PF1|=2|PF2|,則該雙曲線的離心率
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)點(diǎn)P是雙曲線與圓x2+y2=a2+b2的一個(gè)交點(diǎn),F(xiàn)1, F2分別是雙曲線的左、右焦點(diǎn),且||=||,則雙曲線的離心率為( )
A. B.+1 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值,試對(duì)雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com