直線ly=kx1與雙曲線C的右支交于不同的兩點(diǎn)A,B,求實(shí)數(shù)k的取值范圍.

答案:略
解析:

ly=kx1代入C,得①,依題意得

所以k的取值范圍是


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時(shí),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知兩點(diǎn)滿足條件的動(dòng)點(diǎn)P的軌跡是曲線E,直線 l y= kx-1與曲線E交于AB兩個(gè)不同點(diǎn)。

(1)求k的取值范圍;(2)如果求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省模擬題 題型:解答題

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時(shí),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x,y),求x關(guān)于k的函數(shù)關(guān)系式x=f(k);若P與M重合時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x,y),求x關(guān)于k的函數(shù)關(guān)系式x=f(k);若P與M重合時(shí),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案