解方程組
x-y=1
2x+y=2
考點(diǎn):函數(shù)的零點(diǎn)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用加減法將二元一次方程組變形為一元一次方程,然后解之.
解答: 解:兩個(gè)方程相加消元得3x=3,所以x=1,
將x=1代入x-y=1得y=0,
∴原方程組的解為:
x=1
y=0
點(diǎn)評(píng):本題考查了二元一次方程組的解法;解二元一次方程組關(guān)鍵是消元,化為一元一次方程解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+
a+1
x
的圖象關(guān)于y軸對(duì)稱(chēng),則函數(shù)g(x)=|x-a|的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),它們?cè)冢?4,0]上的圖象分別是圖①和圖②,則關(guān)于x的不等式f(x)•g(x)<0的解集是( 。
A、(-2,0)∪(2,4)
B、[0,4]
C、(2,4)
D、(-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n為異面直線(xiàn),m⊥平面α,n⊥平面β.直線(xiàn)l滿(mǎn)足l⊥m,l⊥n,l?α,l?β.現(xiàn)有四個(gè)結(jié)論:
①α∥β,且l∥α;
②α⊥β,且l⊥β;
③α與β相交,且交線(xiàn)垂直于l;
④α與β相交,且交線(xiàn)平行于l.
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
2
a2-2
)•(ax-a-x) 其中,a>0且a≠1,在R上是單調(diào)遞增,則a∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)滿(mǎn)足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=x,則關(guān)于x的方程f(x)=(
1
10
x在x∈[0,4]上解的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知bn+1=bn2+bn,b1=
1
3
,Tn=
1
b1+1
+
1
b2+1
+…+
1
bn+1
,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
|x|
x+2
-ax2,其中a∈R,
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有2個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且lnSn,ln
Sn-an+1
2
,ln(1-an)成等差數(shù)列,則an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案