(本小題滿分14分)
已知為實數(shù),數(shù)列滿足,當時,
(1)當時,求數(shù)列的前100項的和;
(2)證明:對于數(shù)列,一定存在,使;
(3)令,當時,求證:
(1)
.
(2)證明:見解析;
(3)   
(1)解本小題的關鍵是確定當a=100時,由題意知數(shù)列的前34項成首項為100,公差為-3的等差數(shù)列,從第35項開始,奇數(shù)項均為3,偶數(shù)項均為1.
(2)本小題易采用數(shù)學歸納法進行證明.再由n=k+1時成立時,一定要用上n=k時的歸納假設,否則證明無效.
(3)先由,再求出.
從而
然后再討論n是奇數(shù)和n是偶數(shù)兩種情況進行證明.
解:(1)當a=100時,由題意知數(shù)列的前34項成首項為100,公差為-3的等差數(shù)列,從第35項開始,奇數(shù)項均為3,偶數(shù)項均為1,從而
………………(3分)
.………………(5分)
(2)證明:①若0<a1≤3,則題意成立…………………(6分)
②若a1>3此時數(shù)列的前若干項滿足an-an-1=3,即an=a1-3(n-1).
,則當n=k+1時,
從而此時命題成立……(8分)
③若a1≤0,由題意得a2=4-a1>3,則有②的結論知此時命題也成立.
綜上所述,原命題成立……………(9分)
(3)當2<a<3時,因為
所以 ……………(10分)
因為bn>0,所以只要證明當n≥3時不等式成立即可.而

………………………………(12分)
①當n=2k(k∈N*且k≥2)時,

…(13分)
②當n=2k-l(k∈N*且k≥2)時,出于bn>0,所以
綜上所述,原不等式成立………(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列{}中,=1, ,它的通項公式為
,根據(jù)上述結論,可以知道不超過實數(shù) 的最大整數(shù)為              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四個小動物換座位,開始是鼠、猴、兔、貓分別坐1,2,3,4號位子上(如圖),第一次前后排動物互換座位,第二次左右列動物互換座位,…,這樣交替進行下去,那么第2009次互換座位后,小兔的座位對應的是

(1 )               (2)               (3)             (4)
A.編號1 B.編號2C.編號3D.編號4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列:1,3,6,10,15,… ,則其第6項是(    )
A.20 B.21 C.22D.23

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義:,已知數(shù)列滿足:,若對任意正整數(shù),都有成立,則的值為             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A.4B.C.D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

=1,寫出的數(shù)列的第34項為             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若規(guī)定一種對應關系,使其滿足:①;
②如果那么.若已知,則
(1)                 ;
(2)                 

查看答案和解析>>

同步練習冊答案