【題目】定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )

A. B.

C. D.

【答案】C

【解析】

根據(jù)f(x)是奇函數(shù),以及f(x+2)=f(-x)即可得出f(x+4)=f(x),即得出f(x)的周期為4,從而可得出f(2018)=f(0),, 然后可根據(jù)f(x)在[0,1]上的解析式可判斷f(x)在[0,1]上單調(diào)遞增,從而可得出結(jié)果.

∵f(x)是奇函數(shù);∴f(x+2)=f(-x)=-f(x);∴f(x+4)=-f(x+2)=f(x);
∴f(x)的周期為4;∴f(2018)=f(2+4×504)=f(2)=f(0),, ∵x∈[0,1]時(shí),f(x)=2x-cosx單調(diào)遞增;∴f(0)<,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于,兩點(diǎn),則二面角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬元)對(duì)年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對(duì)近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額,10)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

其中,,,

現(xiàn)擬定關(guān)于的回歸方程為

(1)求的值(結(jié)果精確到0.1);

(2)根據(jù)擬定的回歸方程,預(yù)測(cè)當(dāng)研發(fā)經(jīng)費(fèi)為13萬元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?

附:對(duì)于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,向量,,,

1)求函數(shù)的解析式,并求當(dāng)時(shí),的單調(diào)遞增區(qū)間;

(2)當(dāng)時(shí),的最大值為5,求的值;

(3)當(dāng)時(shí),若不等式,上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)對(duì)其所生產(chǎn)的甲、乙兩種產(chǎn)品進(jìn)行質(zhì)量檢測(cè),分別各抽查6件產(chǎn)品,檢測(cè)其重量的誤差,測(cè)得數(shù)據(jù)如下(單位:):

甲:13 15 13 8 14 21

乙:15 13 9 8 16 23

(1)畫出樣本數(shù)據(jù)的莖葉圖;

(2)分別計(jì)算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】移動(dòng)支付極大地方便了我們的生活,也為整個(gè)杜會(huì)節(jié)約了大量的資源與時(shí)間成本.2018年國家高速公路網(wǎng)力推移動(dòng)支付車輛高速通行費(fèi).推廣移動(dòng)支付之前,只有兩種支付方式:現(xiàn)金支付或支付,其中使用現(xiàn)金支付車輛比例的為,使用支付車輛比例約為,推廣移動(dòng)支付之后,越來越多的車主選擇非現(xiàn)金支付,如表是推廣移動(dòng)支付后,隨機(jī)抽取的某時(shí)間段內(nèi)所有經(jīng)由某高速公路收費(fèi)站駛出高速的車輛的通行費(fèi)支付方式分布及其他相關(guān)數(shù)據(jù):

支付方式

是否需要在入口處取卡

是否需要停車支付

數(shù)量統(tǒng)計(jì)(輛)

平均每輛車行駛出耗時(shí)(秒)

現(xiàn)金支付

135

30

掃碼支付

240

15

支付

750

4

車輛識(shí)別支付

375

4

并以此作為樣本來估計(jì)所有在此高速路上行駛的車輛行費(fèi)支付方式的分布.

已知需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為10秒,不需要取卡的車輛進(jìn)入高速平均每車耗時(shí)為4秒.

(Ⅰ)若此高速公路的日均車流量為9080輛,估計(jì)推廣移動(dòng)支付后比推廣移動(dòng)支付前日均可少發(fā)卡多少張?

(Ⅱ)在此高速公路上,推廣移動(dòng)支付后平均每輛車進(jìn)出高速收費(fèi)站總耗時(shí)能否比推廣移動(dòng)支付前大約減少一半?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)考試中,小明的成績(jī)?cè)?/span>90~100分的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07,計(jì)算;

1)小明在數(shù)學(xué)考試中取得79分以上成績(jī)的概率;

2)小明考試及格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是

A. 相關(guān)關(guān)系是一種非確定性關(guān)系

B. 線性回歸方程對(duì)應(yīng)的直線,至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 在回歸分析中,的模型比的模型擬合的效果好

查看答案和解析>>

同步練習(xí)冊(cè)答案