【題目】如圖所示,四邊形為菱形,,二面角為直二面角,點是棱的中點.

(Ⅰ)求證:;

(Ⅱ)若,當二面角的余弦值為時,求直線與平面所成的角.

【答案】(Ⅰ)證明見解析;(Ⅱ)

【解析】

(Ⅰ)設(shè)點是棱的中點,連接,根據(jù)面面垂直的性質(zhì)定理,得到平面,進而得到,再由,結(jié)合線面垂直的判定定理,即可求解;

(Ⅱ)解法一:設(shè)點的交點,證得為二面角的平面角,結(jié)合解三角形的知識,即可求解;解法二:設(shè)點的交點,以所在直線為所在直線為軸,過點垂直平面的直線為軸,建立空間直角坐標系,可得平面的一個法向量,結(jié)合向量的夾角公式,即可求解.

(Ⅰ)如圖所示,設(shè)點是棱的中點,連接

及點是棱的中點,可得,

又二面角為直二面角,故平面

又因為平面,所以

又因為四邊形為菱形,所以

的中位線,所以,可得,

又由,且平面,平面,

所以平面 又因為平面,

所以

(Ⅱ)解法一:設(shè)點的交點,

由(Ⅰ)可知平面,

均在平面內(nèi),從而有,

為二面角的平面角,

因為,所以為等邊三角形.

不妨設(shè)菱形的邊長為

則在中,,

于是

中,,

整理得,

因為平面,所以為直線與平面所成的角.

,

所以直線與平面所成的角為.

解法二:設(shè)點的交點,

所在直線為所在直線為軸,

過點垂直平面的直線為軸,建立空間直角坐標系.

設(shè),則,,

設(shè)平面的法向量為,

,即

,得的一個法向量為,

,解得,

,

,

則直線與平面所成的角為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m為整數(shù),.整數(shù)數(shù)列滿足:不全為零,且對任意正整數(shù)n,均有.證明:若存在整數(shù)r、s(r>s≥2)使得,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的兩個頂點坐標是,,的周長為是坐標原點,點滿足.

1)求點的軌跡的方程;

2)若互相平行的兩條直線分別過定點,且直線與曲線交于兩點,直線與曲線交于兩點,若四邊形的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面四邊形中,為直角,為等邊三角形,現(xiàn)把沿著折起,使得平面與平面垂直,且點M的中點.

1)求證:平面平面;

2)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程,點在直線上,直線與曲線交于兩點.

1)求曲線的普通方程及直線的參數(shù)方程;

2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國南北朝時期的數(shù)學家祖暅提出了計算幾何體體積的祖暅原理:冪勢既同,則積不容異.意思是兩個同高的幾何體,如果在等高處的截面積都相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是半徑為3的圓的三分之一,則該幾何體的體積為(

A.πB.πC.4D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系.

1)設(shè)射線l的極坐標方程為,若射線l與曲線C交于A,B兩點,求AB的長;

2)設(shè)M,N是曲線C上的兩點,若∠MON,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1ab0)的離心率為,點Ma,0),N0,b),O0,0),且△OMN的面積為1

1)求橢圓C的標準方程;

2)設(shè)A,Bx軸上不同的兩點,點A(異于坐標原點)在橢圓C內(nèi),點B在橢圓C外.若過點B作斜率不為0的直線與C相交于PQ兩點,且滿足∠PAB+QAB180°.證明:點A,B的橫坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,.,為鄰邊作平行四邊形,連接.

1)求證:平面;

2)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案