若不等式2xlnx≥-x2+ax-3對(duì)x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先把已知等式轉(zhuǎn)化為a≤x+2lnx+
3
x
,設(shè)g(x)=x+2lnx+
3
x
,x∈(0,+∞),對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)函數(shù)的單調(diào)性求得函數(shù)的最小值,只要a小于或等于最小值即可.
解答: 解:2xlnx≥-x2+ax-3對(duì)x∈(0,+∞),
等價(jià)于a≤x+2lnx+
3
x
,
令g(x)=x+2lnx+
3
x
,x∈(0,+∞),
g′(x)=1+
2
x
-
3
x2
=
(x+3)(x-1)
x2

當(dāng)0<x<1時(shí),g′(x)<0,g(x)單調(diào)減,
當(dāng)x=1時(shí),g′(x)=0,
當(dāng)x>1時(shí),g′(x)>0,g(x)單調(diào)增,
∴g(x)min=g(1)=4,
∴a≤4.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)函數(shù)求最值的問(wèn)題.考查了學(xué)生對(duì)函數(shù)基礎(chǔ)知識(shí)的理解和靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子中裝有4張卡片,每張卡片上寫(xiě)一個(gè)數(shù)字,數(shù)字分別是1?2?3?4.現(xiàn)從盒子中隨機(jī)抽取卡片.若一次抽取3張卡片,求3張卡片上數(shù)字之和大于7的概率(  )
A、
7
24
B、
11
24
C、
7
16
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=|x+7|+|x-1|
(1)解不等式f(x)≥10
(2)g(x)=
1
f(x)+m
的定義域?yàn)镽,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinx,cosx),
n
=(
3
sinx,sinx),函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an=
Sn
n
+2(n-1)
(n∈N+).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫(xiě)出an和Sn關(guān)于n的表達(dá)式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,證明:
1
5
≤Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b,若函數(shù)f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<β<
π
4
<α<
π
2
,cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,求sin
α+β
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(4
4
1
x
+
3x2
n展開(kāi)式中的倒數(shù)第三項(xiàng)的二項(xiàng)式系數(shù)為45,則n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案