14.某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè),命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤是④.(填序號(hào))
    ①甲的極差是29;②乙的眾數(shù)是21;③甲罰球命中率比乙高;④甲的中位數(shù)是24.

    分析 通過(guò)莖葉圖找出甲的最大值及最小值求出極差判斷出①對(duì);找出甲中間的兩個(gè)數(shù),求出這兩個(gè)數(shù)的平均數(shù)即數(shù)據(jù)的中位數(shù),判斷出④錯(cuò);根據(jù)圖的集中于離散程度,判斷出甲的平均值比乙的平均值大,判斷出③對(duì).

    解答 解:由莖葉圖知:
    甲的最大值為37,最小值為8,所以甲的極差為29,故①對(duì);
    乙的數(shù)據(jù)中出現(xiàn)次數(shù)最多的是21,所以②對(duì);
    甲的命中個(gè)數(shù)集中在20而乙的命中個(gè)數(shù)集中在10和20,所以甲的平均數(shù)大,故③對(duì);
    甲中間的兩個(gè)數(shù)為22,24,所以甲的中位數(shù)為$\frac{22+24}{2}=23$,故④不對(duì),
    故答案為:④.

    點(diǎn)評(píng) 莖葉圖與頻率分布直方圖比較,其優(yōu)點(diǎn)保留了原始數(shù)據(jù),便于統(tǒng)計(jì)、記錄.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    4.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中點(diǎn).
    (Ⅰ)證明:面PAD⊥面PCD;
    (Ⅱ)求三棱錐B-AMC的體積.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    5.點(diǎn)M(-1,2,0)所在的位置是( 。
    A.在yOz平面上B.在xOy平面上C.在xOz平面上D.在z平面上

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    2.已知雙曲線$\frac{x^2}{m}-{y^2}$=1的右焦點(diǎn)恰好是拋物線y2=8x的焦點(diǎn)重合,則m=( 。
    A.3B.5C.4D.1

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

    9.已知函數(shù)y=logax(a>0且a≠1),當(dāng)x∈[3,9]時(shí),函數(shù)的最小值比最大值小1,則a=3或$\frac{1}{3}$.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

    19.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,以此類推,則當(dāng)n=11時(shí),an+bn=199.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

    6.曲線ρ=8sin θ和ρ=-8cos θ(ρ>0,0≤θ<2π)的交點(diǎn)的極坐標(biāo)是(4$\sqrt{2}$,$\frac{3π}{4}$).

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

    3.設(shè)變量x、y滿足下列條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+1≥0}\\{y≥0}\end{array}\right.$,則z=xy的最大值為1.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

    4.已知m=log0.58,n=3.2-3,p=3.20.3,則實(shí)數(shù)m,n,p的大小關(guān)系為( 。
    A.m<p<nB.m<n<pC.n<m<pD.n<p<m

    查看答案和解析>>

    同步練習(xí)冊(cè)答案