14.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow$|=1,|$\overrightarrow{a}$+2$\overrightarrow$|=2,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為-$\frac{1}{4}$.

分析 運(yùn)用向量模的公式和向量的平方即為模的平方,可得$\overrightarrow{a}$•$\overrightarrow$,再由$\overrightarrow b$在$\overrightarrow a$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$,計(jì)算即可得到所求.

解答 解:$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow$|=1,|$\overrightarrow{a}$+2$\overrightarrow$|=2,
可得|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+2$\overrightarrow$|2=4,
即為$\overrightarrow{a}$2+4$\overrightarrow{a}$•$\overrightarrow$+4$\overrightarrow$2=4,
即有1+4$\overrightarrow{a}$•$\overrightarrow$+4=4,
$\overrightarrow{a}$•$\overrightarrow$=-$\frac{1}{4}$,
可得$\overrightarrow b$在$\overrightarrow a$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=-$\frac{1}{4}$.
故答案為:-$\frac{1}{4}$.

點(diǎn)評 本題考查向量數(shù)量積的性質(zhì):向量的平方即為模的平方,考查向量的投影概念,運(yùn)算求解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=tan($\frac{x}{2}$-$\frac{π}{3}$)的定義域、單調(diào)區(qū)間和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的奇函數(shù),且f(x)=f(x+2),當(dāng)x∈(0,1)時,f(x)=tan(x-$\frac{π}{6}$),則函數(shù)f(x)在區(qū)間[0,4]上的零點(diǎn)個數(shù)是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線2x-y+2=0交拋物線C于A,B兩點(diǎn),P是線段AB的中點(diǎn),過P作x軸的垂線交拋物線C于點(diǎn)Q.
(1)若直線AB過焦點(diǎn)F,求拋物線C的方程;
(2)若QA⊥QB,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=(a+i)(-3+ai)(a∈R),若z<0,則a的值是( 。
A.a=$\sqrt{3}$B.a=-$\sqrt{3}$C.a=-1D.a=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(ax2+x-1)ex+f'(0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若g(x)=e-xf(x)+lnx,h(x)=ex,過O(0,0)分別作曲線y=g(x)與y=h(x)的切線l1,l2,且l1與l2關(guān)于x軸對稱,求證:-$\frac{(e+1)^{3}}{2{e}^{2}}$<a<-$\frac{e+2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=$\sqrt{3}$sin($\frac{π}{4}$x)的圖象向左平移3個單位,得函數(shù)y=$\sqrt{3}$sin($\frac{π}{4}$x+φ)(|φ|<π)的圖象(如圖),點(diǎn)M,N分別是函數(shù)f(x)圖象上y軸兩側(cè)相鄰的最高點(diǎn)和最低點(diǎn),設(shè)∠MON=θ,則tan(φ-θ)的值為( 。
A.1-$\sqrt{3}$B.2-$\sqrt{3}$C.1+$\sqrt{3}$D.-2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)u,v,x,y滿足u2+v2=1,$\left\{\begin{array}{l}x+y-1≥0\\ x-2y+2≥0\\ x≤2\end{array}\right.$,則z=ux+vy的最大值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,則實(shí)數(shù)a=2.

查看答案和解析>>

同步練習(xí)冊答案