【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集為(﹣1,3),求a,b的值;
(2)當(dāng)a=1時(shí),若對(duì)任意x∈R,f(x)≥0恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)b=a時(shí),解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).

【答案】
(1)解:∵f(x)<0的解集是(﹣1,3),

∴x2﹣(a+1)x+b=0的兩個(gè)根是﹣1,3,

解得:a=1,b=﹣3;


(2)解:a=1時(shí),f(x)=x2﹣2x+b,

x∈R,f(x)≥0恒成立,

∴△=(﹣2)2﹣4b≤0,解得:b≥1,

故b的范圍是[1,+∞);


(3)解:b=a時(shí),f(x)<0即x2﹣(a+1)x+a<0,

∴(x﹣1)(x﹣a)<0,

a<1時(shí),a<x<1,a=1時(shí),x∈

a>1時(shí),1<x<a,

綜上,a<1時(shí),不等式f(x)<0的解集是{x|a<x<1},

a=1時(shí),不等式f(x)<0的解集是,

a>1時(shí),不等式f(x)<0的解集是{x|1<x<a}.


【解析】(1)將x=﹣1,3代入f(x)=0,得到關(guān)于a,b的方程組,解出即可;(2)將a=1代入函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)求出b的范圍即可;(3)問(wèn)題轉(zhuǎn)化為x2﹣(a+1)x+a<0,即(x﹣1)(x﹣a)<0,通過(guò)討論a的范圍求出不等式的解集即可.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x20的均值和方差分別為1和8,若yi=2xi+3(i=1,2,…,20),則y1 , y2 , …,y20的均值和方差分別是(
A.5,32
B.5,19
C.1,32
D.4,35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,f(x)=aln(x﹣1)+x,f′(2)=2
(1)求a的值,并求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程y=g(x);
(2)設(shè)h(x)=mf′(x)+g(x)+1,若對(duì)任意的x∈[2,4],h(x)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠擬建一個(gè)下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計(jì)厚度,單位:米),按計(jì)劃容積為72π立方米,且h≥2r,假設(shè)其建造費(fèi)用僅與表面積有關(guān)(圓柱底部不計(jì)),已知圓柱部分每平方米的費(fèi)用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費(fèi)用為y千元. (Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費(fèi)用最小時(shí)的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓P過(guò)A(﹣8,0),B(2,0),C(0,4)三點(diǎn),圓Q:x2+y2﹣2ay+a2﹣4=0.
(1)求圓P的方程;
(2)如果圓P和圓Q相外切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=sin2x的圖象經(jīng)過(guò)適當(dāng)變換可以得到y(tǒng)=cos2x的圖象,則這種變換可以是(
A.沿x軸向右平移 個(gè)單位
B.沿x軸向左平移 個(gè)單位
C.沿x軸向左平移 個(gè)單位
D.沿x軸向右平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bcosA= asinB.
(1)求角A的大;
(2)若a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足對(duì)任意的n∈N* , 都有a13+a23++an3=(a1+a2++an2且an>0.
(1)求a1 , a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若bn= ,記Sn= ,如果Sn 對(duì)任意的n∈N*恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x﹣3y﹣6=0,點(diǎn)T(﹣1,1)在AD邊所在直線上. (Ⅰ)求AD邊所在直線的方程;
(Ⅱ)求矩形ABCD外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案