分析 利用兩角差的正弦公式化簡f(x)的解析式,利用正弦函數(shù)的周期性求得ω,再根據(jù)正弦函數(shù)的定義域和值域求得 f(x)的取值范圍.
解答 解:函數(shù)f(x)=$\sqrt{3}$sin2ωx-cos2ωx+$\frac{1}{2}$=2sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$(其中ω為常數(shù),且ω>0),
根據(jù)函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象,可得$\frac{T}{2}$=$\frac{1}{2}$•$\frac{2π}{2ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,
∴ω=1,f(x)=2sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
則當(dāng)x∈[-$\frac{π}{6}\;,\;\frac{π}{4}}$]時,2x-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{3}$],sin(x-$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴f(x)的取值范圍是[-$\frac{3}{2}$,$\sqrt{3}$+1],
故答案為:$[{-\frac{3}{2}\;,\;\frac{1}{2}+\sqrt{3}}]$.
點評 本題主要考查兩角差的正弦公式,正弦函數(shù)的周期性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {-1,0,1,2} | C. | {-1,0,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,6) | B. | (-∞,-1)∪(2,6] | C. | (-2,-1)∪(2,6] | D. | (3,6] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-2sin(2x) | B. | y=-2sin(2x+$\frac{π}{3}$) | C. | y=-2sin(2x-$\frac{π}{3}$) | D. | y=-2sin(2x+$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{121}{27}$ | B. | $\frac{122}{27}$ | C. | $\frac{121}{81}$ | D. | $\frac{122}{81}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com