5.已知函數(shù)f(x)=$\sqrt{3}$sin2ωx-cos2ωx+$\frac{1}{2}$(其中ω為常數(shù),且ω>0),函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象如圖所示.則當(dāng)x∈[-$\frac{π}{6}\;,\;\frac{π}{4}}$]時,函數(shù)f(x)的取值范圍是[-$\frac{3}{2}$,$\sqrt{3}$+1].

分析 利用兩角差的正弦公式化簡f(x)的解析式,利用正弦函數(shù)的周期性求得ω,再根據(jù)正弦函數(shù)的定義域和值域求得 f(x)的取值范圍.

解答 解:函數(shù)f(x)=$\sqrt{3}$sin2ωx-cos2ωx+$\frac{1}{2}$=2sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$(其中ω為常數(shù),且ω>0),
根據(jù)函數(shù)g(x)=f(x)-$\frac{5}{2}$的部分圖象,可得$\frac{T}{2}$=$\frac{1}{2}$•$\frac{2π}{2ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,
∴ω=1,f(x)=2sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
則當(dāng)x∈[-$\frac{π}{6}\;,\;\frac{π}{4}}$]時,2x-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{3}$],sin(x-$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴f(x)的取值范圍是[-$\frac{3}{2}$,$\sqrt{3}$+1],
故答案為:$[{-\frac{3}{2}\;,\;\frac{1}{2}+\sqrt{3}}]$.

點評 本題主要考查兩角差的正弦公式,正弦函數(shù)的周期性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等比數(shù)列{an}中,a1=1,a4=8,則S6=( 。
A.31B.63C.127D.511

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)復(fù)數(shù)z滿足z•i=-1+5i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)所表示的點位于第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知tan(α-β)=$\frac{2}{5}$,tanβ=$\frac{3}{5}$,則tan(α+$\frac{π}{4}$)=-$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2},則M∩N=( 。
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A=(-∞,-1)∪(2,+∞),B={x|log2(x+2)≤3},則A∩B=( 。
A.(2,6)B.(-∞,-1)∪(2,6]C.(-2,-1)∪(2,6]D.(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)y=2sin(-2x+$\frac{π}{3}$)的圖象向左平移$\frac{π}{3}$個單位后,得到的圖象對應(yīng)的解析式應(yīng)該是( 。
A.y=-2sin(2x)B.y=-2sin(2x+$\frac{π}{3}$)C.y=-2sin(2x-$\frac{π}{3}$)D.y=-2sin(2x+$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=(2x-3)9=a0+a1(x-1)+a2(x-1)2+…+a9(x-1)9,則a1+…+a9=2,f(9)+8被8除的余數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足3an+1+an=0,a2=-$\frac{2}{3}$,則{an}的前5項的和等于( 。
A.$\frac{121}{27}$B.$\frac{122}{27}$C.$\frac{121}{81}$D.$\frac{122}{81}$

查看答案和解析>>

同步練習(xí)冊答案