20.設(shè)f(x)=$\left\{{\begin{array}{l}{x+1,x≥0}\\{{2^x},x<0}\end{array}}\right.\end{array}$,則f(-1)的值為$\frac{1}{2}$.

分析 直接利用分段函數(shù)求解函數(shù)的值即可.

解答 解:f(x)=$\left\{{\begin{array}{l}{x+1,x≥0}\\{{2^x},x<0}\end{array}}\right.\end{array}$,則f(-1)=2-1=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí)f(x)=log2x,則f(-4)+f(0)=-2; 若f(a)>f(-a),則實(shí)數(shù)a的取值范圍是a>1或-1<a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等差數(shù)列{an}中,a1=-3,11a5=5a8,前n項(xiàng)和為Sn
(1)求an;
(2)當(dāng)n為何值時(shí),Sn最?并求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$π+\sqrt{3}π$B.$\frac{4}{3}π$C.$2π+\frac{{2\sqrt{3}}}{3}π$D.$π+\frac{{\sqrt{3}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ln(x+1)-ax(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求f(x)的最大值;
(Ⅱ)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求證:($\frac{1}{n}$+1)n<e,n∈N*(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=lgx4,g(x)=4lgxB.$f(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$,$g(x)=\sqrt{x^2}$
C.$f(x)=\frac{{{x^2}-4}}{x-2}$,g(x)=x+2D.$f(x)=\sqrt{x+1}•\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC上的射影為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法正確的是( 。
A.命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
B.“x=1”是“x2-3x+2=0”的必要不充分條件
C.若p∧q為假命題,則p,q均為假命題
D.對(duì)于命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知矩陣A=$(\begin{array}{l}{x}&{-3}\\{y}&{0}\end{array})$,B=$(\begin{array}{l}{-2y}&{0}\\{-y}&{11-2x}\end{array})$,C=$(\begin{array}{l}{3}&{-3}\\{0}&{1}\end{array})$,且A+B=C,則x+y的值為6.

查看答案和解析>>

同步練習(xí)冊(cè)答案