3.如圖動(dòng)直線(xiàn)l:y=b與拋物線(xiàn)y2=4x交于點(diǎn)A,與橢圓$\frac{x^2}{2}+{y^2}$=1交于拋物線(xiàn)右側(cè)的點(diǎn)B,F(xiàn)為拋物線(xiàn)的焦點(diǎn),則|AF|+|BF|+|AB|的最大值為(  )
A.$3\sqrt{3}$B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

分析 利用拋物線(xiàn)的定義,求出拋物線(xiàn)的焦點(diǎn)坐標(biāo),求出B的坐標(biāo),轉(zhuǎn)化所求的距離為x的函數(shù)的關(guān)系式,然后求解最大值即可.

解答 解:直線(xiàn)l:y=b與拋物線(xiàn)y2=4x交于點(diǎn)A,F(xiàn)為拋物線(xiàn)的焦點(diǎn),直線(xiàn)y=b與x=-1的交點(diǎn)為D,由拋物線(xiàn)定義,可知AF=AD,|AF|+|BF|+|AB|的最大值,
就是BD+BF的最大值,F(xiàn)(1,0),設(shè)B(x,b),橢圓$\frac{x^2}{2}+{y^2}$=1的焦點(diǎn)坐標(biāo)(1,0).
可得$\frac{{x}^{2}}{2}+^{2}=1$,|AF|+|BF|+|AB|=x+1+$\sqrt{(x-1)^{2}+^{2}}$=x+1+$\sqrt{(x-1)^{2}+1-\frac{{x}^{2}}{2}}$
=x+1+$\sqrt{\frac{{x}^{2}}{2}-2x+2}$=x+1+$\frac{\sqrt{2}}{2}(2-x)$=1+$\sqrt{2}$+x(1-$\frac{\sqrt{2}}{2}$),x∈(0,$\sqrt{2}$].
當(dāng)x=$\sqrt{2}$時(shí),1+$\sqrt{2}$+x(1-$\frac{\sqrt{2}}{2}$)=1+$\sqrt{2}$+$\sqrt{2}$(1-$\frac{\sqrt{2}}{2}$)=2$\sqrt{2}$,
故選:D.

點(diǎn)評(píng) 本題考查直線(xiàn)與橢圓以及拋物線(xiàn)的位置關(guān)系的綜合應(yīng)用,考查函數(shù)思想的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)向量$\overrightarrow a$=(x,2),$\overrightarrow b$=(1,-1),且$\overrightarrow a$在$\overrightarrow b$方向上的投影為$\sqrt{2}$,則x的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=4cosωxsin({ωx-\frac{π}{6}})({ω>0})$的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間x∈(0,π)的單調(diào)遞增區(qū)間;
(2)求f(x)在$[{\frac{π}{8},\frac{3π}{8}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)F1,F(xiàn)2分別為橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1({a_1}>{b_1}>0)$與雙曲線(xiàn)C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1({a_2}>0,{b_2}>0)$的公共焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,∠F1MF2=90°,若橢圓的離心率${e_1}=\frac{3}{4}$,則雙曲線(xiàn)C2的離心率e2的值為( 。
A.$\frac{9}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在如圖所示的程序圖中,若函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},αx≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$,則輸出的結(jié)果是( 。
A.-3B.$\frac{1}{16}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某個(gè)路口交通指示燈,紅燈時(shí)間為30秒,黃燈時(shí)間為10秒,綠燈時(shí)間為40秒,黃燈時(shí)間可以通行,當(dāng)你到達(dá)路口時(shí),等待時(shí)間不超過(guò)10秒就可以通行的概率為( 。
A.$\frac{3}{4}$B.$\frac{4}{7}$C.$\frac{5}{7}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知曲線(xiàn)C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A、B的極坐標(biāo)分別為A-(2,0)、B(-1,$\sqrt{3}$)
(1)求直線(xiàn)AB的直角坐標(biāo)方程;
(2)在曲線(xiàn)C上求一點(diǎn)M,使點(diǎn)M到AB的距離最大,并求出些最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)點(diǎn)M(0,1)和N(-1,m2)(m∈R)的直線(xiàn)的傾斜角α的取值范圍是( 。
A.0°≤α<180°B.45°≤α<180°
C.0°≤α≤45°或90°<α<180°D.0°≤α≤45°或90°≤α<180°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N+,6Sn=an2+3an+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案