12.函數(shù)$y=\frac{1}{1-sinx}$的定義域?yàn)?\left\{{x\left|{\;}\right.x≠\frac{π}{2}+2kπ,k∈Z}\right\}$.

分析 根據(jù)分母不是0,得到關(guān)于x的不等式,求出函數(shù)的定義域即可.

解答 解:由題意得:
1-sinx≠0,解得:x≠2kπ+$\frac{π}{2}$,k∈Z,
故函數(shù)的定義域是:$\left\{{x\left|{\;}\right.x≠\frac{π}{2}+2kπ,k∈Z}\right\}$,
故答案為:$\left\{{x\left|{\;}\right.x≠\frac{π}{2}+2kπ,k∈Z}\right\}$.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問(wèn)題,考查三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0.

(1)若S5=5,求S6及a1;

(2)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某商場(chǎng)對(duì)A商品近30天的日銷(xiāo)售量y(件)與時(shí)間t(天)的銷(xiāo)售情況進(jìn)行整理,得到如下數(shù)據(jù)統(tǒng)計(jì)分析,日銷(xiāo)售量y(件)與時(shí)間t(天)之間具有線性相關(guān)關(guān)系
時(shí)間(t)246810
日銷(xiāo)售量(y)3837323330
(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),用最小二乘法原理求出y關(guān)于t的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+a
(2)已知A商品近30天內(nèi)的銷(xiāo)售價(jià)格Z(元)與時(shí)間t(天)的關(guān)系為:z=$\left\{\begin{array}{l}{-t+100,(20≤t≤30,t∈N)}\\{t+20,(0<t<20,t∈Z)}\end{array}\right.$
根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)t為何值時(shí),A商品的日銷(xiāo)售額最大(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}\overline{t}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

中,,,則( )

A. B.

C. D.以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.為了得到函數(shù)$y=cos(x+\frac{π}{5})$,x∈R的圖象,只需把余弦曲線y=cosx上的所有的點(diǎn)( 。
A.向左平移$\frac{1}{5}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{5}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{1}{5}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{5}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=Asin(ωx+\frac{3π}{4})$(A>0,ω>0,|φ|<π)的一段圖象如圖所示,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(文)給出命題:
①函數(shù)$y=cos(\frac{2}{3}x+\frac{7π}{2})$是奇函數(shù);
②若α、β都是第一象限角且α<β,則tanα<tanβ;
③函數(shù)$y=2sin(\frac{2}{3}x+\frac{π}{3})$在區(qū)間$[-π,\frac{π}{2}]$上的最小值是-2,最大值是$\sqrt{3}$;
④直線$x=\frac{π}{8}$是函數(shù)$y=\frac{1}{2}sin(5x+\frac{7π}{8})$圖象的一條對(duì)稱(chēng)軸.
其中正確命題的序號(hào)是①④.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.從4名男生4名女生中選3位代表,其中至少兩名女生的選法有28 種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某數(shù)據(jù)由大到小為10,5,x,2,2,1,其中x不是5,該組數(shù)據(jù)的眾數(shù)是中位數(shù)的$\frac{2}{3}$,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案