7.設(shè)p:實(shí)數(shù)x滿足(x-3a)(x-a)<0,其中a>0,q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{x^2}-3x≤0\\{x^2}-x-2>0\end{array}\right.$,若p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

分析 欲使p是?q的充分不必要條件,則必須集合A是集合C的真子集

解答 解:依題意,適合條件p的x組成的集合為A={x|a<x<3a}
適合條件q的x組成的集合B={x|2<x≤3}
所以適合條件?q的x組成的集合C={x|x≤2或x>3},
欲使p是?q的充分不必要條件
則必須集合A是集合C的真子集,
所以a>0且3a≤2或者a≥3
綜上所述,實(shí)數(shù)a的取值范圍是$\{a|0<a≤\frac{2}{3}$或a≥3}

點(diǎn)評(píng) 本題考查了簡易邏輯的有關(guān)知識(shí)、一元二次不等式的解法,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=1+i,則 $\frac{{{z^2}-2z}}{1-z}$=( 。
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某家公司每月生產(chǎn)兩種布料A和B,所有原料是三種不同顏色的羊毛.下表給出了生產(chǎn)每匹每種布料所需的羊毛量,以及可供使用的每種顏色的羊毛的總量.
羊毛顏色每匹需要/kg供應(yīng)量/kg
布料A布料B
331050
421200
261800
已知生產(chǎn)每匹布料A、B的利潤分別為60元、40元.分別用x、y表示每月生產(chǎn)布料A、B的匹數(shù).
(Ⅰ)用x、y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)如何安排生產(chǎn)才能使得利潤最大?并求出最大的利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在?ABCD中,E是CD上一點(diǎn),且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,AB=2BC=4,∠BAD=60°,則$\overrightarrow{AC}$•$\overrightarrow{EB}$等于( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,點(diǎn)P是圓O:x2+y2=4上一點(diǎn),圓O在點(diǎn)P處的切線為m,PQ垂直x軸于點(diǎn)Q(P、Q不重合),線段PQ的重點(diǎn)為E,點(diǎn)A(-2,0),直線l:x=2與直線m交于點(diǎn)M.
(1)若點(diǎn)P(1,$\sqrt{3}$),求直線m的方程;
(2)當(dāng)P在圓O上運(yùn)動(dòng)時(shí),證明A,E,M三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在三棱錐E一ABC中,AB⊥AC,AB=1,AC=$\frac{\sqrt{2}}{2}$,點(diǎn)D在線段BC上,且BD=2CD,ED⊥平面ABC.
(I)證明:AD⊥BE;
(Ⅱ)若AD=DE,求直線CE與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足3bcosC=3a-c,則cosB=( 。
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.三棱臺(tái)ABC-A1B1C1中,側(cè)棱CC1⊥底面ABC,∠ACB=90°,AC=B1C1=a,BC=2a,AB1與CC1成45°角,D為BC中點(diǎn),
(1)B1D與平面ABC的位置關(guān)系如何?
(2)求三棱臺(tái)的體積;
(3)求A1C1與平面AB1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-2x2+x,將函數(shù)y=|f(x)|的圖象沿著x軸作對(duì)稱變換得到函數(shù)y=g(x)的圖象,函數(shù)h(x)=$\left\{\begin{array}{l}g(x),x<1\\ lnx,x≥1\end{array}$,若關(guān)于x的不等式h(x)-kx≤0在R上恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.$[{\frac{1}{e^2},1}]$B.$[{\frac{2}{e},1}]$C.$[{\frac{1}{e},1}]$D.[1,e]

查看答案和解析>>

同步練習(xí)冊(cè)答案