已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4,則拋物線的方程為(  )
A.y2=4xB.x2=4y
C.y2=8xD.x2=8y
C
設(shè)拋物線方程為y2=2px(p>0),
則準(zhǔn)線方程為x=-,
雙曲線5x2-y2=20的漸近線方程為y=±x,
拋物線的準(zhǔn)線與雙曲線漸近線的交點(diǎn)分別為P1(-,p),P2(-,-p).
=|P1P2
=·
=p2=4.
∴p2=16,p=4,
∴拋物線方程為y2=8x.故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,直線,為平面上的動(dòng)點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線方程為y2=4x,其焦點(diǎn)為F,準(zhǔn)線為l,A點(diǎn)為拋物線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),射線HAE垂直于準(zhǔn)線l,垂足為H,C點(diǎn)在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長線分別交拋物線于點(diǎn)B和點(diǎn)D.

(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫出此時(shí)A點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)作直線l交拋物線于A,B兩點(diǎn),分別過A,B作拋物線的切線,則的交點(diǎn)P的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2px,以過焦點(diǎn)的弦為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點(diǎn)為F,點(diǎn)P在拋物線上,若PF=2,則點(diǎn)P到拋物線頂點(diǎn)O的距離是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不過原點(diǎn)的直線交于兩點(diǎn),若使得以為直徑的圓過原點(diǎn),則直線必過點(diǎn)(   )
A.B.C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線x2=4y上有一條長為6的動(dòng)弦AB,則AB中點(diǎn)到x軸的最短距離為(  )
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

O為坐標(biāo)原點(diǎn),F為拋物線C:y2=4x的焦點(diǎn),P為C上一點(diǎn),若|PF|=4,則△POF的面積為(  )
A.2 B.2C.2D.4

查看答案和解析>>

同步練習(xí)冊答案