1.已知橢圓C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,其左右焦點(diǎn)分別為F1、F2,過橢圓的左焦點(diǎn)F1作一條傾斜角為45°的直線與橢圓交于A,B兩點(diǎn)
(1)求三角形ABF2的周長;
(2)求弦長|AB|.

分析 (1)三角形ABF2的周長=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a.
(2)c=1,設(shè)A(x1,y1),B(x2,y2),直線AB的方程為:y=x+1.與橢圓方程聯(lián)立化為:9x2+10x-15=0,利用|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.

解答 解:(1)三角形ABF2的周長=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a=4$\sqrt{5}$.
(2)c=$\sqrt{5-4}$=1,
設(shè)A(x1,y1),B(x2,y2),直線AB的方程為:y=x+1.
聯(lián)立$\left\{\begin{array}{l}{y=x+1}\\{\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,化為:9x2+10x-15=0,
∴x1+x2=-$\frac{10}{9}$,x1x2=-$\frac{15}{9}$.
∴|AB|=$\sqrt{2[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2×[(-\frac{10}{9})^{2}-4×(-\frac{15}{9})]}$=$\frac{16}{9}\sqrt{5}$.

點(diǎn)評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、一元二次方程的根與系數(shù)的關(guān)系、弦長公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知p:方程x2+mx+1=0有兩個(gè)不等的正實(shí)數(shù)根,若¬p是真命題,則實(shí)數(shù)m的取值范圍為[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列{an}的前m項(xiàng)的和是14,前2m項(xiàng)的和是62,則它的前3m項(xiàng)的和是(  )
A.124B.134C.144D.154

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的公差d>1,前10項(xiàng)和S10=100,{bn}為等比數(shù)列,公比為q,且q=d,b1=a1,b2=2.
(1)求an和bn;
(2)設(shè)cn=$\frac{{{a_n}-2}}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知{a,b,c}={0,1,2},且下列三個(gè)關(guān)系:a≠2,b=2,c≠0只有一個(gè)正確,則100c+10b+a=102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\frac{1}{x+1}-lo{g}_{2}$(x+1),則不等式4f(x+1)>7的解集為( 。
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=a+2t}\\{y=4t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosθ\\ y=sinθ\end{array}\right.$(θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次方程x2+x-1=0的兩根為α,β,求值:
(1)α33;    
(2)α22

查看答案和解析>>

同步練習(xí)冊答案