定義在(0,+∞)上的函數(shù)f(x)滿(mǎn)足:①當(dāng)x∈[1,3)時(shí),f(x)=
x-1,1≤x≤2
3-x,2<x<3
②f(3x)=3f(x),設(shè)關(guān)于x的函數(shù)F(x)=f(x)-1的零點(diǎn)從小到大依次記為x1,x2,x3,x4,x5,…,則x1+x2+x3+x4+x5=
 
考點(diǎn):分段函數(shù)的應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由F(x)=f(x)-1=0得f(x)=1,分別作出函數(shù)y=f(x)和y=1的圖象,利用數(shù)形結(jié)合得到函數(shù)的對(duì)稱(chēng)軸即可得到結(jié)論.
解答: 解:由F(x)=f(x)-1=0得f(x)=1,分別作出函數(shù)y=f(x)和y=1的圖象如圖:
則在[1,27]內(nèi)兩個(gè)函數(shù)有5個(gè)零點(diǎn),
且x1=2,x2與x3關(guān)于x=6對(duì)稱(chēng),x4與x5關(guān)于x=18對(duì)稱(chēng)…,
x2+x3
2
=6
,
x4+x5
2
=18
,
即x2+x3=12,x4+x5=36,
則x1+x2+x3+x4+x5=2+12+36=50,
故答案為:50
點(diǎn)評(píng):本題考查了函數(shù)的圖象與性質(zhì)、區(qū)間轉(zhuǎn)換、對(duì)稱(chēng)性,利用數(shù)形結(jié)合得到函數(shù)的對(duì)稱(chēng)性是解決本題的關(guān)鍵.難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(x-1)(x-2a-3)<0},函數(shù)y=lg
x-(a2+2)
2a-x
的定義域?yàn)榧螧.
(1)若a=1,求集合A∩∁RB
(2)已知a>-1且“x∈A”是“x∈B”的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2為橢圓焦點(diǎn),在橢圓上滿(mǎn)足∠F1PF2為直角的P點(diǎn)僅有兩個(gè),則離心率e為
 
_.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=8x的焦點(diǎn)到直線x-
3
y=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y>0,且x+2y=1,則u=
x+1
x
y+1
4y
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x,y)為圓x2+y2=4上任意一點(diǎn),則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出S的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,過(guò)BC中點(diǎn)D作平行于AC的直線l,l交AB于E,交⊙O于G、F,交⊙O在A點(diǎn)的切線于P,若PE=3,ED=2,EF=3,則PA的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,點(diǎn)P是曲線C:ρ=2cosθ上的一點(diǎn),則P的極坐標(biāo)可能是(  )
A、(2,0)
B、(2,
π
2
C、(1,
π
4
D、(1,
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案