如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點(diǎn)M在線段EC上(除端點(diǎn)外)
(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積
(1)證明過程詳見;(2)
【解析】
試題分析:本題主要考查線線平行、線線垂直、線面平行、二面角、三棱錐的體積等基礎(chǔ)知識,考查學(xué)生的空間想象能力和推理論證能力,考查用空間向量法解立體問題,考查學(xué)生的計(jì)算能力 第一問,取N為ED中點(diǎn),利用中位線得,而,所以,所以ABMN為平行四邊形,所以,所以利用線面平行的判定可得∥平面;第二問,用向量法解題,關(guān)鍵是建立空間直角坐標(biāo)系,求出平面BDM和平面ABF的法向量,利用夾角公式求出,從而求出的值,即點(diǎn)M為EC中點(diǎn),所以利用等體積轉(zhuǎn)化法求三棱錐B DEM的體積
試題解析:(1)證明 取中點(diǎn),連結(jié) 在△中,分別為的中點(diǎn),
則∥,且 由已知∥,,
因此,∥,且 所以,四邊形為平行四邊形
于是,∥ 又因?yàn)?/span>平面,且平面,
所以∥平面 6分
(2)按如圖建立空間直角坐標(biāo)系,點(diǎn)與坐標(biāo)原點(diǎn)重合
設(shè),則,又,設(shè),則,即
設(shè)是平面的法向量,則
,
取,得,即得平面的一個(gè)法向量為 …… 10分
由題可知,是平面的一個(gè)法向量
因此,,
即點(diǎn)為中點(diǎn) 此時(shí),,為三棱錐的高,
所以, ……… 12分
考點(diǎn):1 線面平行的判定;2 向量法;3 三棱錐的體積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
| ||
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com