【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;
(1)將表示為的函數(shù);
(2)若,求總用氧量的取值范圍.
【答案】(1);(2)
【解析】
(1)先由題意,得到下潛所需時(shí)間為分鐘,返回所用時(shí)間為分鐘,再由題中數(shù)據(jù),即可求出結(jié)果;
(2)先由基本不等式求出最小值,再令,用單調(diào)性的定義,判斷在上的單調(diào)性,從而可求出最大值,即可得出結(jié)果.
(1)由題意,下潛所需時(shí)間為分鐘,返回所用時(shí)間為分鐘,
所以總用氧量,;
(2)因?yàn)?/span>,由(1)得, 當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,即;
令
當(dāng)時(shí),任取,且,
則
,
因?yàn)?/span>,所以,,
因此,
所以函數(shù)在上單調(diào)遞減;
同理,在上單調(diào)遞增;
又,,,
所以,
即,所以總用氧量的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,且滿(mǎn)足(2c﹣b)tanB=btanA.
(1)求A的大��;
(2)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間(-3,-1)內(nèi)單調(diào)遞增;②當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
③函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;④當(dāng)時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③ C. ③④ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= sin ,若存在f(x)的極值點(diǎn)x0滿(mǎn)足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣e﹣x﹣2x.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=f(2x)﹣4bf(x),當(dāng)x>0時(shí),g(x)>0,求b的最大值;
(Ⅲ)已知1.4142< <1.4143,估計(jì)ln2的近似值(精確到0.001).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求實(shí)數(shù)a,b的值;
(2)解不等式 >1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱(chēng)為A類(lèi)同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱(chēng)為B類(lèi)同學(xué)),現(xiàn)用分層抽樣方法(按A類(lèi)、B類(lèi)分兩層)從該年級(jí)的學(xué)生中抽查100名同學(xué).如果以身高達(dá)到165厘米作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生進(jìn)行統(tǒng)計(jì),得到以下列聯(lián)表:
身高達(dá)標(biāo) | 身高不達(dá)標(biāo) | 總計(jì) | |
積極參加體育鍛煉 | 40 | ||
不積極參加體育鍛煉 | 15 | ||
總計(jì) | 100 |
(1)完成上表;
(2)能否有犯錯(cuò)率不超過(guò)0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?(的觀(guān)測(cè)值精確到0.001).
參考公式: ,
參考數(shù)據(jù):
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+ +5(常數(shù)a,b∈R)滿(mǎn)足f(1)+f(﹣1)=14.
(1)求出a的值,并就常數(shù)b的不同取值討論函數(shù)f(x)奇偶性;
(2)若f(x)在區(qū)間(﹣∞,﹣ )上單調(diào)遞減,求b的最小值;
(3)在(2)的條件下,當(dāng)b取最小值時(shí),證明:f(x)恰有一個(gè)零點(diǎn)q且存在遞增的正整數(shù)數(shù)列{an},使得 =q +q +q +…+q +…成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com