(08年新建二中一模理) 橢圓左、右焦點分別為,是橢圓上一點,, 設.

    (Ⅰ)求橢圓離心率的關系式;

    (Ⅱ)過點離心率最小的橢圓的切線,交軸于點,求證:.

解析(Ⅰ),,∴,.由余弦定理,

           ,得.

  (Ⅱ)由(Ⅰ)知.設,知時,上單調(diào)遞增,∴時,,得.設,則,.不妨設

     點在第一象限.由,得,,

.

     設是橢圓上動點,則,相減得,

     即.則時,.設切線的方程為:

      ①, 又  ②. 將②代入①整理得,.

    令得,,∴.又,故.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年新建二中一模)如圖,已知正三棱柱中,,,點、分別在棱、上,且.

   (Ⅰ)求平面與平面所成銳二面角的大小;

   (Ⅱ)求點到平面的距離..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年新建二中一模理)已知函數(shù).

      (Ⅰ)求上的極值;

      (Ⅱ)若對任意,不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年新建二中一模文)已知函數(shù).

   (Ⅰ)當時,若滿足,,試求的解析式;

   (Ⅱ)當時,圖象上的任意一點處的切線斜率恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年新建二中一模文) 已知二次函數(shù)的值域是,那么的最大值是(    ).

    A.                     B.                   C.                   D.

查看答案和解析>>

同步練習冊答案