方程
x2
k-3
+
y2
5-k
=1表示焦點在x軸上的橢圓,則k的取值范圍是
 
考點:橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:方程
x2
m
+
y2
n
=1
表示焦點在x軸上的橢圓的充要條件是
m>0
n>0
m>n
解答: 解:∵方程
x2
k-3
+
y2
5-k
=1表示焦點在x軸上的橢圓,
k-3>0
5-k>0
k-3>5-k
,
解得4<k<5,
∴k的取值范圍(4,5).
故答案為:(4,5).
點評:本題考查橢圓的定義的應(yīng)用,是基礎(chǔ)題,解題時要熟練掌握橢圓的簡單性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a為實數(shù),命題p:關(guān)于x的方程x2-ax+a=0有實數(shù)根;命題q:方程
x2
9
+
y2
a
=1
所表示的曲線為雙曲線,若p∧(¬p)是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(exlnx)′
 
;(
sinx
cosx
)′=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為等邊三角形,AB=2,設(shè)點P,Q滿足
AP
=λ
AB
AQ
=(1-λ)
AC
,λ∈R,若
BQ
CP
=-
3
2
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,A={x|x<1},B={x|x<2},則(∁UA)∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P1在直線l1:y=x上,點P2在直線l2:y=-x上,且P1,P2兩點在y軸同側(cè),點P是線段P1P2中點,S△OP1P2=1,則點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log2(x2-2x-3)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|x+1|+|x-1|≥a對一切x∈R恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+lnx,則f′(1)等于( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案