設(shè)橢圓E:+=1(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(I)求橢圓E的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,并求|AB|的取值范圍,若不存在說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:河南省鄭州外國(guó)語(yǔ)學(xué)校2012屆高三下學(xué)期綜合測(cè)試驗(yàn)收(5)數(shù)學(xué)理科試題 題型:044
設(shè)橢圓C:+=1(a>b>0)的離心率e=,右焦點(diǎn)到直線(xiàn)+=1的距離d=,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)O作兩條互相垂直的射線(xiàn),與橢圓C分別交于A,B兩點(diǎn),證明點(diǎn)O到直線(xiàn)AB的距離為定值,并求弦AB長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川一中2012屆高三第一次模擬考試數(shù)學(xué)(文)試題 題型:044
設(shè)橢圓M:+=1(a>b>0)的離心率為,點(diǎn)A(a,0),B(0,-b)原點(diǎn)O到直線(xiàn)AB的距離為
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線(xiàn)PC上,若直線(xiàn)PA的方程為y=kx-4,且·=0,試求直線(xiàn)BE的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)P(4,4),圓C:(x-m)2+y2=5(m<3) 與橢圓E:+=1(a>b>0)有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求·的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)F1,F2是橢圓E:+=1(a>b>0)的左、右焦點(diǎn),P為直線(xiàn)x=上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com