【題目】如圖,在三棱錐中,是邊長為1的正三角形,,.
(1)求證:;
(2)點是棱的中點,點P在底面內(nèi)的射影為點,證明:平面;
(3)求直線和平面所成角的大小.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)取中點,連結,,由已知得,,由此能證明平面,從而證明.
(2)可得為等邊三角形,由,可得為的中點,即,從而得到平面;
(3)由(1)得平面平面,可得PB在平面面內(nèi)的攝影為,由(2)得為等邊三角形,即可得直線和平面所成角的大。
(1)取中點,連結,,
是邊長為的正三角形,.
,,,平面,
平面,且平面,
.
(2),得,
又,
為等邊三角形.
,為的中點,
又點是棱的中點,.
且平面,平面.
平面.
(3)由(1)知平面,而平面,
所以平面平面,
所以在平面內(nèi)的射影為,
所以為直線和平面所成的角,
由(2)得為等邊三角形,
所以.
所以直線和平面所成角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);
(2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),的圖象與直線分別交于、兩點,則( )
A.的最小值為
B.使得曲線在處的切線平行于曲線在處的切線
C.函數(shù)至少存在一個零點
D.使得曲線在點處的切線也是曲線的切線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線上動點與定點的距離和它到定直線的距離的比是常數(shù).若過的動直線與曲線相交于兩點.
(1)判斷曲線的名稱并寫出它的標準方程;
(2)是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com