9.已知集合A={x|-1<x<5},B={x|2<x<7}.
(1)求A∩B,A∪B;
(2)求∁R(A∩B),∁R(A∪B),(∁RA)∩B.

分析 (1)根據(jù)集合的基本運(yùn)算即可求A∩B,A∪B;
(2)根據(jù)補(bǔ)集的定義即可求∁R(A∩B),∁R(A∪B),(∁RA)∩B.

解答 解:(1)∵A={x|-1<x<5},B={x|2<x<7}.
∴A∩B={x|2<x<5},A∪B={x|-1<x<7}.
(2)∁R(A∩B)={x|x≥5或x≤2},∁R(A∪B)={x|x≥7或x≤-1},
RA={x|x≥5或x≤-1},
則(∁RA)∩B={x|5≤x<7}.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,結(jié)合交集,補(bǔ)集,并集的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a,b>0,a+b=5,則$\sqrt{a+1}$+$\sqrt{b+3}$的最大值為(  )
A.18B.9C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用隨機(jī)模擬方法得到的頻率( 。
A.大于概率B.小于概率C.等于概率D.是概率的近似值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.判斷下列函數(shù)的奇偶性.
(1)f(x)=$\sqrt{9-{x}^{2}}$+$\sqrt{{x}^{2}-9}$;
(2)f(x)=(x+1)$\sqrt{\frac{1-x}{1+x}}$;
(3)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$;
(4)f(x)=$\frac{lg(1-{x}^{2})}{|x-2|-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若f(-2x)+2f(2x)=3x-2,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知兩個(gè)不同集合A={1,3,a2-a+3},B=(1,5,a3-a2-4a+7},A∩B={1,3}.
(1)求實(shí)數(shù)a的值以及集合A和B;
(2)求滿足A∩B?M?A∪B的集合M的子集的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知全集U=R,集合A={x|-3≤x≤4},B={x|a-1<x<a+2,a∈R},且∁UA∪∁UB=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{2x-3}{x}$圖象的對(duì)稱中心為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\sqrt{x+2}$+$\frac{1}{x+3}$+(x+2)0的定義域是{x|x>-2}.

查看答案和解析>>

同步練習(xí)冊答案