如圖,底面△為正三角形的直三棱柱中,,,是的中點,點在平面內,.
(Ⅰ)求證:;
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大。
科目:高中數學 來源: 題型:解答題
在三棱柱ABC-A1B1C1中,側面ABB1A1為矩形,AB=1,AA1=,D為AA1中點,BD與AB1交于點O,CO丄側面ABB1A1.
(Ⅰ)證明:BC丄AB1;
(Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如下圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四邊形中,,,點為線段上的一點.現將沿線段翻折到(點與點重合),使得平面平面,連接,.
(Ⅰ)證明:平面;
(Ⅱ)若,且點為線段的中點,求二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知三棱錐S—ABC的底面是正三角形,A點在側面SBC上的射影H是△SBC的垂心.
(1)求證:BC⊥SA
(2)若S在底面ABC內的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知ABCD是矩形,AD=2AB,E,F分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當PA=AB=4時,求四面體E-GFD的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com