11.某班數(shù)學課代表給全班同學出了一道證明題,以下四人中只有一人說了真話,只有一人會證明此題.甲:我不會證明.乙:丙會證明.丙:丁會證明.。何也粫C明.根據(jù)以上條件,可以判定會證明此題的人是( 。
A.B.C.D.

分析 由題意可知,丁會證明.丁不會證明.兩者之間,必有一個正確,所以判斷丙與丁的正誤即可.

解答 解:四人中只有一人說了真話,只有一人會證明此題.丙:丁會證明.。何也粫C明.所以丙與丁中一定有一個是正確的;
若丙說了真話,則甲必是假話,矛盾;若丁說了真話,則甲說的是假話,甲就是會證明的那個人,符合題意;以此類推.易得出答案:A.
故選:A.

點評 本題考查合情推理的方法,是基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知邊長為$2\sqrt{2}$的正方形ABCD的四個頂點都在球心為O的球面上,若球O的體積為36π,則直線OA與平面ABCD所成的角的余弦值為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,a=2,b=3,∠B=2∠A,則cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,$f(x)=\left\{\begin{array}{l}\frac{5}{4}sin({\frac{π}{2}x})({0≤x≤1})\\{({\frac{1}{4}})^x}+1({x>1})\end{array}\right.$若關于x的方程5[f(x)]2-(5a+6)f(x)+6a=0(a∈R)有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是(0,1)∪{$\frac{5}{4}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知二次數(shù)f(x)=ax2+bx+c(a≤b)的值域為[0,+∞),則$\frac{a-b+4c}{a+b}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an}和等比數(shù)列{bn},其中{an}的公差不為0.設Sn是數(shù)列{an}的前n項和.若a1,a2,a5是數(shù)列{bn}的前3項,且S4=16.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若數(shù)列{$\frac{4{S}_{n}-1}{{a}_{n}+t}$}為等差數(shù)列,求實數(shù)t;
(3)構造數(shù)列a1,b1,a2,b1,b2,a3,b1,b2,b3,…,ak,b1,b2,…,bk,…,若該數(shù)列前n項和Tn=1821,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A、B、C所對的邊分別是a、b、c,若b=$\sqrt{2}$asinB,則角A的大小為$\frac{π}{4}$或$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.直線$\left\{\begin{array}{l}x=5+tsin{30°}\\ y=-tcos{30°}\end{array}\right.(t為參數(shù))$的傾斜角是120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),當k為整數(shù)時,向量$\overrightarrow{m}$=k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{n}$=$\overrightarrow{a}$+k$\overrightarrow$ 的夾角能否為60°?證明你的結論.

查看答案和解析>>

同步練習冊答案