【題目】如圖,已知四棱錐,底面,底面為等腰梯形,,,,點E邊上的點,.

1)求證:平面;

2)若,求點E到平面的距離 .

【答案】1)證明見解析(2

【解析】

(1)上取一點,使得,推出,則四邊形為平行四邊形,從而,進而得到平面;

(2)(1),平面,故點到平面的距離與點到平面的距離相等,設點到平面的距離為d,,即可解出.

(1)證明:如圖,上取一點,使得,

,,

,可得,

,可得,

,,

,

四邊形為平行四邊形,

,

平面,平面,

平面;

(2)(1),平面,

故點到平面的距離與點到平面的距離相等,

設點到平面的距離為d,

過點于點,

可得,

故在,,

,,

,

平面,平面,

,

平面,平面,,

平面,

,,

,

,解得,

故點E到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ex-x2+axR,曲線y=fx)在(0,f(0))處的切線方程為y=bx

(1)求fx)的解析式;

(2)當xR時,求證:fx)≥-x2+x;

(3)若fx)≥kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.

(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,向量與向量的夾角為,且.

(1)求向量;

(2)設向量,向量,其中,若,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當,時,求函數(shù)的最小值;

(2)當,時,求證方程在區(qū)間上有唯一實數(shù)根;

(3)當時,設函數(shù)兩個不同的極值點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,Fx軸正半軸上的一個動點.以F為焦點、O為頂點作拋物線C.設P為第一象限內拋物線C上的一點,Qx軸負半軸上一點,使得PQ為拋物線C的切線,且.C1、C2均與直線OP切于點P,且均與x軸相切.求點F的坐標,使圓C1C2的面積之和取到最小值,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設AA1= AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

(Ⅰ) 判斷函數(shù)上的單調性;

(Ⅱ) 設函數(shù)的定義域為,且有極值點.

(ⅰ) 試判斷當時, 是否滿足題目的條件,并說明理由;

(ⅱ) 設函數(shù)的極小值點為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點,圓

(1)求過點的圓的切線方程;

(2)求過點的圓的切線方程.

查看答案和解析>>

同步練習冊答案