分析 假設(shè)a≥$\frac{1}{3}$,b≥$\frac{1}{3}$,c≥$\frac{1}{3}$,則a+b+c≥1,從而與a+b+c<1矛盾,即可證明結(jié)論.
解答 證明:假設(shè)a≥$\frac{1}{3}$,b≥$\frac{1}{3}$,c≥$\frac{1}{3}$,則a+b+c≥1,
與a+b+c<1矛盾,
所以a,b,c中至少有一個小于$\frac{1}{3}$.
點(diǎn)評 反證法是一種簡明實用的數(shù)學(xué)證題方法,也是一種重要的數(shù)學(xué)思想.相對于直接證明來講,反證法是一種間接證法.它是數(shù)學(xué)學(xué)習(xí)中一種很重要的證題方法.其實質(zhì)是運(yùn)用“正難則反”的策略,從否定結(jié)論出發(fā),通過邏輯推理,導(dǎo)出矛盾.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com