若數(shù)列{an}的通項公式為an=
1
(n+1)(n+2)
,其前n項和為
7
18
,則n為( 。
A、5B、6C、7D、8
考點:數(shù)列的求和
專題:計算題
分析:根據(jù)an的特點,利用裂項相消法求出數(shù)列{an}的前n項和Sn,列出方程求出n的值.
解答: 解:由題意得,an=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

所以Sn=a1+a2+…+an=(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n+1
-
1
n+2

=
1
2
-
1
n+2
=
n
2(n+2)
,
n
2(n+2)
=
7
18
,解得n=7,
故選:C.
點評:本題考查裂項相消法求出數(shù)列{an}的前n項和,根據(jù)an的特點選擇恰當?shù)那蠛头椒ǎ?/div>
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某班對期中考試成績優(yōu)秀的學生進行獎勵,全班共有5人獲獎,其中有2個來自A學習小組,2人來自B學習小組,1人來自C學習小組,現(xiàn)讓這5人排成一排合影,要求同學習小組的同學不能相鄰,那么不同的排法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
2x+3y≤6
3x+2y≤6
的所有點中,使目標函數(shù)z=x-y取得最大值點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
9
-
y2
4
=1
的漸近線方程是( 。
A、y=±
3
2
x
B、y=±
2
3
x
C、y=±
9
4
x
D、y=±
4
9
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,焦點在x 軸上,離心率為
2
2
,且橢圓經(jīng)過圓C:x2+y2-8x+2y-28=0的圓心C.
(1)求橢圓的方程;
(2)設直線l過橢圓的左焦點且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一條電路從A處到B處接通時,可有
 
條不同的線路.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+2x-4y+3=0
(1)求圓心C的坐標及半徑r的大;
(2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓M的圓心在直線y=-2x上,且與直線x+y=1相切于點A(2,-1),
(1)試求圓M的方程;
(2)過原點的直線l與圓M相交于B,C兩點,且|BC|=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:方程x2+2mx+4=0有實數(shù)根;命題q:方程x2+2(m-2)x-3m+10=0有實數(shù)根.已知p∨q為真,¬q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案