16.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z滿足z•$\frac{(1+i)^{2}}{2}$=1+2i,則復(fù)數(shù)z的虛部為( 。
A.-1B.-iC.-2D.-2i

分析 把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:由z•$\frac{(1+i)^{2}}{2}$=1+2i,得z•i=1+2i,
∴z=$\frac{1+2i}{i}=\frac{(1+2i)(-i)}{-{i}^{2}}=2-i$,
∴復(fù)數(shù)z的虛部為-1.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-2y+2≥0\\ x+y≤1\\ y+1≥0\end{array}\right.$且z=2x-y,則z的最大值為( 。
A.-7B.-1C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,$B>\frac{π}{6}$,$sin({A+\frac{π}{6}})=\frac{3}{5}$,$cos({B-\frac{π}{6}})=\frac{4}{5}$,則sin(A+B)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z的共軛復(fù)數(shù)是$\overline{z}$,且滿足$\frac{\overline{z}}{1+i}$=i(其中i為虛數(shù)單位),則z=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.實(shí)數(shù)x,y滿足不等式組:$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,若z=x2+y2,則z的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在直角梯形ABCD中AD∥BC.∠ABC=90°,AB=BC=2,DE=4,CE⊥AD于E,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$.
(Ⅰ)求證:BE⊥平面AD′C;
(Ⅱ)求平面D′AB與平面D′CE的所夾的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$f(x)=\frac{e^x}{{{x^2}+a}}({a>0})$的兩個(gè)極值點(diǎn)分別為x1,x2(x1<x2),則ax2取值范圍是( 。
A.(0,1)B.(0,2)C.$({1,\frac{32}{27}}]$D.$({0,\frac{32}{27}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在x∈[4,6],y∈[2,4]內(nèi)隨機(jī)取出兩個(gè)數(shù),則這兩個(gè)數(shù)滿足x-y-3>0的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{10}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{a_{n+1}}$(n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案