18.從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50人測(cè)量身高.?dāng)?shù)據(jù)表明,被測(cè)學(xué)生身高全部介于155cm到195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165);…;第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組比第七組少1人.
(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(2)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩人,記他們的身高分別為x,y,求滿(mǎn)足“|x-y|≤5”的事件的概率.

分析 (Ⅰ)由頻率分布直方圖得身高在180cm以上(含180cm)為最后三組,計(jì)算可得最后三組的頻率,又由全校高三的總?cè)藬?shù),計(jì)算可得高三年級(jí)全體男生身高在180cm以上人數(shù);
(Ⅱ)根據(jù)題意,分析可得身高在[180,185)內(nèi)的人數(shù)為4,設(shè)為a、b、c、d,身高在[190,195]內(nèi)的人數(shù)為2,設(shè)為A、B,分類(lèi)列舉從6人中取出2人的情況,分析可得基本事件總數(shù)與事件“|x-y|≤5”所包含的基本事件數(shù)目,由古典概型公式,計(jì)算可得答案

解答 解:(I) 由頻率分布直方圖得身高在180cm以上(含180cm)為最后三組,
則最后三組頻率為(0.016+0.012+0.008)×5=0.18,
這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù)為800×0.18=144.
(II)由已知得身高在[180,185)內(nèi)的人數(shù)為4,設(shè)為a、b、c、d,
身高在[190,195]內(nèi)的人數(shù)為2,設(shè)為A、B,
若x,y∈[180,185)時(shí),有ab、ac、ad、bc、bd、cd共6種情況;
若x,y∈[190,195]時(shí),有AB共1種情況;
若x,y分別在[180,185)和[190,195]內(nèi)時(shí),有aA、bA、cA、dA、aB、bB、cB、dB,共8種情況.
所以,基本事件總數(shù)為6+1+8=15,
事件“|x-y|≤5”即取出兩人在同一組,其所包含的基本事件個(gè)數(shù)有6+1=7,
所以P(|x-y|≤5)=$\frac{7}{15}$

點(diǎn)評(píng) 本題考查古典概型的計(jì)算與頻率分步直方圖的運(yùn)用,關(guān)鍵是正確分析頻率分步直方圖,得到數(shù)據(jù)信息

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓C的方程為(x-4)2+y2=1,且圓C與x軸交于M,N兩點(diǎn),設(shè)直線l的方程為y=kx(k>0)
(1)當(dāng)直線l與圓C相切時(shí),求直線l的方程;
(2)已知直線l與圓C相交于A,B兩點(diǎn)
(i)若AB≤$\frac{2\sqrt{17}}{17}$,求實(shí)數(shù)k的取值范圍;
(ii)直線AM與直線BN相交于點(diǎn)P,直線AM,直線BN,直線OP的斜率分別為k1,k2,k3,是否存在常數(shù)a,使得k1+k2=ak3恒成立?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某程序框圖如圖所示,該程序運(yùn)行后輸出的k的值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.同時(shí)擲兩枚質(zhì)地均勻的骰子,所得點(diǎn)數(shù)之和大于10的概率為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知圓C經(jīng)過(guò)點(diǎn)(1,$\sqrt{3}$),圓心在直線y=x上,且被直線y=-x+2截得的弦長(zhǎng)為2$\sqrt{2}$.
(I)求圓C的方程.
(Ⅱ)若直線l過(guò)點(diǎn)($\frac{3}{2}$,0),與圓C交于P,Q兩點(diǎn),且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.從1,2,3中任選兩個(gè)數(shù)字構(gòu)成一個(gè)兩位數(shù),則該兩位數(shù)是偶數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在(x+$\root{3}{2}$y)8的展開(kāi)式中,系數(shù)為有理數(shù)的項(xiàng)的所有系數(shù)之和為225.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某班一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖(莖上數(shù)代表十位,葉上數(shù)帶表個(gè)位)如圖1示
(1)以10為組距,圖2給定的坐標(biāo)系中畫(huà)出該班成績(jī)的頻率分布直方圖;
(2)用分層抽樣的方法抽取一個(gè)容量為8的樣本,在樣本中從分?jǐn)?shù)在[60,80)之間的試卷中任取2份分析學(xué)生失分情況,求所抽取的2份試卷中至少有一份分?jǐn)?shù)在[60,70)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從甲、乙、丙三人中任選1人去開(kāi)會(huì),甲沒(méi)有被選中的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案