【題目】在△ABC中,D為BC邊上的中點(diǎn),P0是邊AB上的一個(gè)定點(diǎn),P0B= AB,且對(duì)于AB上任一點(diǎn)P,恒有 ≥ ,則下列結(jié)論中正確的是(填上所有正確命題的序號(hào)).
①當(dāng)P與A,B不重合時(shí), + 與 共線;
② = ﹣ ;
③存在點(diǎn)P,使| |<| |;
④ =0;
⑤AC=BC.
【答案】①②⑤
【解析】解:∵D為BC邊的中點(diǎn),∴ + =2 ,故①正確;
=( + )( + )= 2﹣ 2 , 故②正確;
由題意可得 = ,由已知 ≥ 恒成立,
得 ,即| |≥| |恒成立,故③錯(cuò)誤;
注意到P0 , D是定點(diǎn),∴P0D是點(diǎn)D與直線上各點(diǎn)距離的最小值,則P0D⊥AB,故 =0,
設(shè)AB中點(diǎn)為O,則CO∥P0D,故④錯(cuò)誤;
再由D為BC的中點(diǎn),CO為底邊AB的中線,且CO⊥AB,∴△ABC是等腰三角形,有AC=BC,故⑤正確.
綜上可知,①②⑤正確,
所以答案是:①②⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:
空氣質(zhì)量指數(shù)t | (0,50] | (50,100] | (100,150] | (150,200) | (200,300] | (300,+∞) |
質(zhì)量等級(jí) | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 嚴(yán)重污染 |
天數(shù)K | 5 | 23 | 22 | 25 | 15 | 10 |
(1)若該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量(取整數(shù))存在如下關(guān)系 且當(dāng)t>300時(shí),y>500,估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當(dāng)t>300時(shí),y與t的關(guān)系擬合的曲線為,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,…,10),且知 試用可線性化的回歸方法,求擬合曲線的表達(dá)式.(附:線性回歸方程中, , .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,函數(shù),若的圖象上相鄰兩條對(duì)稱軸的距離為,圖象過點(diǎn).
(1)求表達(dá)式和的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù),其中a為常數(shù).
(I)若x=1是函數(shù)的一個(gè)極值點(diǎn),求a的值
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對(duì)推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)
已知圓,過點(diǎn)作直線交圓于、兩點(diǎn).
(Ⅰ)當(dāng)經(jīng)過圓心時(shí),求直線的方程.
(Ⅱ)當(dāng)直線的傾斜角為時(shí),求弦的長(zhǎng).
(Ⅲ)求直線被圓截得的弦長(zhǎng)時(shí),求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).
(Ⅰ)若是奇函數(shù),求的值.
(Ⅱ)當(dāng)時(shí),求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com