【題目】在△ABC中,D為BC邊上的中點(diǎn),P0是邊AB上的一個(gè)定點(diǎn),P0B= AB,且對(duì)于AB上任一點(diǎn)P,恒有 ,則下列結(jié)論中正確的是(填上所有正確命題的序號(hào)).
①當(dāng)P與A,B不重合時(shí), + 共線;
=
③存在點(diǎn)P,使| |<| |;
=0;
⑤AC=BC.

【答案】①②⑤
【解析】解:∵D為BC邊的中點(diǎn),∴ + =2 ,故①正確;
=( + )( + )= 2 2 , 故②正確;
由題意可得 = ,由已知 恒成立,
,即| |≥| |恒成立,故③錯(cuò)誤;
注意到P0 , D是定點(diǎn),∴P0D是點(diǎn)D與直線上各點(diǎn)距離的最小值,則P0D⊥AB,故 =0,
設(shè)AB中點(diǎn)為O,則CO∥P0D,故④錯(cuò)誤;
再由D為BC的中點(diǎn),CO為底邊AB的中線,且CO⊥AB,∴△ABC是等腰三角形,有AC=BC,故⑤正確.
綜上可知,①②⑤正確,
所以答案是:①②⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 “存在”,命題“曲線表示焦點(diǎn)在軸上的橢圓”,命題 曲線表示雙曲線”

1若“”是真命題,求實(shí)數(shù)的取值范圍;

2的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某城市氣象部門的數(shù)據(jù)中,隨機(jī)抽取100天的空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如表:

空氣質(zhì)量指數(shù)t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

質(zhì)量等級(jí)

優(yōu)

輕微污染

輕度污染

中度污染

嚴(yán)重污染

天數(shù)K

5

23

22

25

15

10

(1)若該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量取整數(shù))存在如下關(guān)系 且當(dāng)t>300時(shí),y>500,估計(jì)在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;

(2)若在(1)中,當(dāng)t>300時(shí),yt的關(guān)系擬合的曲線為,現(xiàn)已取出了10對(duì)樣本數(shù)據(jù)(ti,yi)(i=1,2,3,10),且知 試用可線性化的回歸方法,求擬合曲線的表達(dá)式.(附:線性回歸方程中, , .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,函數(shù),若的圖象上相鄰兩條對(duì)稱軸的距離為,圖象過點(diǎn).

(1)求表達(dá)式和的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,,

(1)求的值;

(2)若的面積是,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù),其中a為常數(shù).

I)若x=1是函數(shù)的一個(gè)極值點(diǎn),求a的值

II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍

III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對(duì)推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點(diǎn)作直線交圓兩點(diǎn).

)當(dāng)經(jīng)過圓心時(shí),求直線的方程.

)當(dāng)直線的傾斜角為時(shí),求弦的長(zhǎng).

)求直線被圓截得的弦長(zhǎng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

Ⅰ)若是奇函數(shù),求的值.

Ⅱ)當(dāng)時(shí),求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

Ⅲ)若函數(shù)上是以為上界的函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案