求函數(shù)y=(
1
3
 x2-3x+2的單調(diào)區(qū)間及值域.
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)t=x2-3x+2,利用復(fù)合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)t=x2-3x+2,則函數(shù)等價為y=(
1
3
t,
則y=(
1
3
t是減函數(shù),
∵t=x2-3x+2=(x+
3
2
2-
1
4
,
∴函數(shù)t=x2-3x+2在(-
3
2
,+∞)上單調(diào)遞增,y=(
1
3
t單調(diào)遞減,
則根據(jù)復(fù)合函數(shù)單調(diào)性之間的性質(zhì)可知,此時函數(shù)f(x)單調(diào)遞減,
則函數(shù)t=x2-3x+2在(-∞,-
3
2
)上單調(diào)遞減,y=(
1
3
t單調(diào)遞減,
則根據(jù)復(fù)合函數(shù)單調(diào)性之間的性質(zhì)可知,此時函數(shù)f(x)單調(diào)遞增,
即函數(shù)的單調(diào)遞增區(qū)間為(-∞,-
3
2
),單調(diào)遞減區(qū)間為(-
3
2
,+∞).
∵t=x2-3x+2=(x+
3
2
2-
1
4
≥-
1
4
,
∴y=(
1
3
t∈(0,3
1
4
].
點評:本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系,結(jié)合同增異減的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x不等式:|x+3|-|2x-1|>
x
2
+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解某校今年準備報考飛行員的學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖所示).已知圖中從左到右的前3個小組的頻率之比為1:2:3,第2小組的頻數(shù)為12,求抽取的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班每周三共有8節(jié)課,上午4節(jié),下午4節(jié).要安排語文、數(shù)學(xué)、外語、物理、化學(xué)、體育,還有兩節(jié)自修課.
(Ⅰ)若數(shù)學(xué)、物理、化學(xué)要排在上午,兩節(jié)自修課要排在下午,共有幾種排課方法?
(Ⅱ)若體育不排第一節(jié)課,數(shù)學(xué)不排最后一節(jié)課,共有幾種排課方法?
(Ⅲ)若語文與數(shù)學(xué)要連排,兩節(jié)自修課不連排,共有幾種排法(第四、五節(jié)課不算連排)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,以O(shè)x軸為始邊作兩個銳角α、β,它們的終邊分別與單位圓相交于A、B兩點.已知A、B的橫坐標分別為
2
10
2
5
5

(1)求tan(α+β)的值;
(2)求
sin2α+sin2α
6cos2α+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax與g(x)=2x2+b的圖象有公共點(1,f(1)),且它們的圖象在該點處的切線相同,記F(x)=f(x)-g(x).
(1)求F(x)的表達式,并求F(x)在[0,1]上的值域;
(2)設(shè)t≤-1,函數(shù)G(x)=x3-3t2x-2t,x∈[0,1],若對于任意x1∈[0,1],總存在x0∈[0,1],使得G(x0)=F(x1),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
4
-α)=-
1
2
,sin(
π
4
+β)=
3
2
,其中
π
4
<α<
π
2
,
π
4
<β<
π
2
,求角(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x2-1|=x+k有三個不同的實數(shù)解,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象經(jīng)過點(
1
4
,
1
2
),則該冪函數(shù)的解析式為
 

查看答案和解析>>

同步練習(xí)冊答案