【題目】底面為正方形的四棱錐P﹣ABCD,F(xiàn)為PD中點.

(1)求證:PB∥面ACF;
(2)若PD⊥面ABCD,求證:AC⊥面PBD.

【答案】
(1)證明:∵四邊形ABCD為正方形,

∴E為BD中點.

∵F為棱PD中點.

∴PB∥EF.

∵PB平面ACF,EF平面ACF,

∴直線PB∥平面ACF


(2)解:∵PD⊥面ABCD,AC平面ABCD,

∴PD⊥AC,

又∵正方形ABCD中,有AC⊥BD,且PD∩BD=D,

∴AC⊥面PBD.


【解析】(1)根據線面平行的判定定理證明PB∥EF即可證明PB∥平面EAC;(2)由PD⊥面ABCD,可證PD⊥AC,又可證AC⊥BD,利用線面垂直的判定定理即可證明AC⊥面PBD.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的判定的理解,了解一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解該校教師對教工食堂的滿意度情況,隨機訪問了名教師.根據這名教師對該食堂的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據分組區(qū)間為: , ,…, , .

(1)求頻率分布直方圖中的值;

(2)從評分在的受訪教師中,隨機抽取2人,求此2人的評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若,且時 ,則=______________

(2)若方程有兩個不相等的正根,則的取值范圍 ___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,求曲線在點處切線的方程.

求函數(shù)的單調區(qū)間.

時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)不論取什么值, 函數(shù)的圖象都過定點,求點的坐標;

(2)若成立, 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,輸出S的值為6,則判斷框中應填入的條件是(

A.k<32?
B.k<65?
C.k<64?
D.k<31?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的通項公式an=5﹣n,其前n項和為Sn , 將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn , 若存在m∈N* , 使對任意n∈N* , 總有Sn<Tn+λ恒成立,則實數(shù)λ的取值范圍是(
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據市場分析,某蔬菜加工點,當月產量為10噸至25噸時,月生產總成本(萬元)可以看出月產量(噸)的二次函數(shù),當月產量為10噸時,月生產成本為20萬元,當月產量為15噸時,月生產總成本最低至17.5萬元.

(I)寫出月生產總成本(萬元)關于月產量噸的函數(shù)關系;

(II)已知該產品銷售價為每噸1.6萬元,那么月產量為多少噸時,可獲得最大利潤,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點C在橢圓M: =1(a>b>0)上,若點A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設橢圓M的焦距為4,P,Q是橢圓M上不同的兩點.線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點P(﹣3,0),直線l過點(0,﹣ ),求直線l的方程;
②若直線l過點(0,﹣1),且與x軸的交點為D.求D點橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案