【題目】正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記的軌跡構(gòu)成的平面為

,使得;

②直線與直線所成角的正切值的取值范圍是;

與平面所成銳二面角的正切值為;

④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).

其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào))

【答案】①②③④

【解析】

中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進(jìn)而求解;③由,取中點(diǎn),則,即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.

中點(diǎn),連接,則,所以,所以平面即為平面,

中點(diǎn),中點(diǎn),連接,則易證得,

所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.

①取中點(diǎn),因?yàn)?/span>是等腰三角形,所以,又因?yàn)?/span>,所以,故①正確;

②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當(dāng)點(diǎn)中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;

當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),

所以直線與直線所成角的正切值的取值范圍是,②正確;

與平面的交線為,,取中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;

④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知四邊形AA1C1C為矩形,AA16ABAC4,∠BAC=∠BAA160°,∠A1AC的角平分線ADCC1D.

1)求證:平面BAD⊥平面AA1C1C;

2)求二面角AB1C1A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點(diǎn)生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會(huì)上贏得一片贊譽(yù).我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時(shí),狠抓質(zhì)量管理,不定時(shí)抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機(jī)抽取了100個(gè),將其質(zhì)量指標(biāo)值分成以下六組:,,…,,得到如下頻率分布直方圖.

1)求出直方圖中的值;

2)利用樣本估計(jì)總體的思想,估計(jì)該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表,中位數(shù)精確到0.01);

3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個(gè)口罩中抽出5個(gè)口罩,并從中再隨機(jī)抽取2個(gè)作進(jìn)一步的質(zhì)量分析,試求這2個(gè)口罩中恰好有1個(gè)口罩為一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,直線與橢圓的另一個(gè)交點(diǎn)分別為.

1)若點(diǎn)坐標(biāo)為,且,求橢圓的方程;

2)設(shè),,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn),動(dòng)點(diǎn)滿足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)軌跡上有兩點(diǎn),它們關(guān)于直線對(duì)稱,且滿足,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過點(diǎn),傾斜角為

1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;

2)設(shè)直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重時(shí)會(huì)危及生命.隨著疫情的發(fā)展,自202025日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時(shí)收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從212日開艙至38日閉倉,累計(jì)收治輕癥患者1056人.據(jù)部分統(tǒng)計(jì)該方艙醫(yī)院從226日至32日輕癥患者治愈出倉人數(shù)的頻數(shù)表與散點(diǎn)圖如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序號(hào)

1

2

3

4

5

6

出倉人數(shù)

3

8

17

31

68

168

根據(jù)散點(diǎn)圖和表中數(shù)據(jù),某研究人員對(duì)出倉人數(shù)與日期序號(hào)進(jìn)行了擬合分析.從散點(diǎn)圖觀察可得,研究人員分別用兩種函數(shù)①分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為

1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類函數(shù),哪一類函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿足,參考數(shù)據(jù)表中

2根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點(diǎn)后三位)

33日實(shí)際總出倉人數(shù)為216人,按①中的回歸模型計(jì)算,差距有多少人?

(附:對(duì)于一組數(shù)據(jù),其回歸直線為

相關(guān)系數(shù)

參考數(shù)據(jù):

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率π是數(shù)學(xué)中一個(gè)非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對(duì)π進(jìn)行了估算.現(xiàn)利用下列實(shí)驗(yàn)我們也可對(duì)圓周率進(jìn)行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機(jī)寫出一對(duì)小于1的正實(shí)數(shù)a,b,再統(tǒng)計(jì)出a,b1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識(shí),則可估計(jì)出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查.已知該校一、二、三、四年級(jí)本科生人數(shù)之比為6554,則應(yīng)從一年級(jí)中抽取90名學(xué)生

B.10件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率為

C.已知變量xy正相關(guān),且由觀測數(shù)據(jù)算得=3,=35,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是=0.4x+2.3

D.從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取2個(gè)球,至少有一個(gè)黑球與至少有一個(gè)紅球是兩個(gè)互斥而不對(duì)立的事件

查看答案和解析>>

同步練習(xí)冊(cè)答案