【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時,狠抓質量管理,不定時抽查口罩質量,該企業(yè)質檢人員從所生產(chǎn)的口罩中隨機抽取了100個,將其質量指標值分成以下六組:,,,…,,得到如下頻率分布直方圖.
(1)求出直方圖中的值;
(2)利用樣本估計總體的思想,估計該企業(yè)所生產(chǎn)的口罩的質量指標值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值作代表,中位數(shù)精確到0.01);
(3)現(xiàn)規(guī)定:質量指標值小于70的口罩為二等品,質量指標值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機抽取2個作進一步的質量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.
【答案】(1)(2)平均數(shù)為71,中位數(shù)為73.33(3)
【解析】
(1)根據(jù)頻率分布直方圖中各小矩形面積和為1,即可求得的值;
(2)由平均數(shù)與中位數(shù)的求法,結合頻率分布直方圖即可得解.
(3)由分層抽樣性質可分別求得抽取的5個口罩中一等品、二等品的數(shù)量,利用列舉法列舉出抽取2個口罩的所有情況,即可求得2個口罩中恰好有1個口罩為一等品的概率.
(1)由,
得.
(2)平均數(shù)為,
設中位數(shù)為,
則,得.
故可以估計該企業(yè)所生產(chǎn)口罩的質量指標值的平均數(shù)為71,中位數(shù)為73.33.
(3)由頻率分布直方圖可知:100個口罩中一等品、二等品各有60個、40個,
由分層抽樣可知,所抽取的5個口罩中一等品、二等品各有3個、2個.
記這3個一等品為,,,2個二等品為,,則從5個口罩中抽取2個的可能結果有:,,,,,,,,,,共10種,
其中恰有1個口罩為一等品的可能結果有:,,,,,.共6種.
故這2個口罩中恰好有1個口罩為一等品的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】今年3月10日湖北武漢某方艙醫(yī)院“關門大吉”,某省馳援湖北“抗疫”的9名身高各不相同的醫(yī)護人員站成一排合影留念,慶祝圓滿完成“抗疫”任務,若恰好從中間往兩邊看都依次變低,則身高排第4的醫(yī)護人員和最高的醫(yī)護人員相鄰的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等比數(shù)列,其前項和為,且滿足,.為等差數(shù)列,其前項和為,如圖_____,的圖象經(jīng)過兩個點.
(Ⅰ)求;
(Ⅱ)若存在正整數(shù),使得,求的最小值.從圖①,圖②,圖③中選擇一個適當?shù)臈l件,補充在上面問題中并作答.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關鍵詞的次數(shù)為基礎所得到的統(tǒng)計指標.“搜索指數(shù)”越大,表示網(wǎng)民對該關鍵詞的搜索次數(shù)越多,對該關鍵詞相關的信息關注度也越高.下圖是2019年9月到2020年2月這半年中,某個關鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結論不正確的是( ).
A.這半年中,網(wǎng)民對該關鍵詞相關的信息關注度與時間具有比較明顯的線性相關性
B.2019年10月網(wǎng)民對該關鍵詞的搜索指數(shù)變化的走勢圖具有較好的對稱性,與正態(tài)曲線相近,故當月搜索指數(shù)的平均值約為29000
C.從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,2019年10月的方差小于11月的方差
D.從網(wǎng)民對該關鍵詞的搜索指數(shù)來看,2019年12月的平均值大于2020年1月的平均值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關系”;
男 | 女 | 合計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
合計 | 100 |
(3)調査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
80 | 40 | 16 | 24 | |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)廠商在加大生產(chǎn)的同時.狠抓質量管理,不定時抽查口罩質量,該廠質檢人員從某日所生產(chǎn)的口罩中隨機抽取了100個,將其質量指標值分成以下五組:,,,,,得到如下頻率分布直方圖.
(1)規(guī)定:口罩的質量指標值越高,說明該口罩質量越好,其中質量指標值低于130的為二級口罩,質量指標值不低于130的為一級口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機抽取8個口罩,再從中抽取3個,記其中一級口罩個數(shù)為,求的分布列及數(shù)學期望;
(2)在2020年“五一”勞動節(jié)前,甲,乙兩人計劃同時在該型號口罩的某網(wǎng)絡購物平臺上分別參加、兩店各一個訂單“秒殺”搶購,其中每個訂單由個該型號口罩構成.假定甲、乙兩人在、兩店訂單“秒殺”成功的概率分別為,,記甲、乙兩人搶購成功的訂單總數(shù)量、口罩總數(shù)量分別為,,
①求的分布列及數(shù)學期望;
②求當的數(shù)學期望取最大值時正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.
①,使得;
②直線與直線所成角的正切值的取值范圍是;
③與平面所成銳二面角的正切值為;
④正方體的各個側面中,與所成的銳二面角相等的側面共四個.
其中正確命題的序號是________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,與圓有且只有兩個公共點.
(1)求拋物線的方程;
(2)經(jīng)過的動直線與拋物線交于兩點,試問在直線上是否存在定點,使得直線的斜率之和為直線斜率的倍?若存在,求出定點;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com