8.四邊形ABCD為正方形,BA⊥面ADPQ,AD⊥AQ,PD∥AQ,
(1)若QA=AB=$\frac{1}{2}$PD,證明:PQ⊥平面DCQ;
(2)若QA=AB=$\frac{1}{3}$PD,求棱錐Q-ABCD的體積與棱錐P-QDC的體積的比值.

分析 (1)由AD⊥DP,CD⊥平面ADPQ,可得DA,DP,DC兩兩垂直.以D為原點,DA,DP,DC所在直線為x軸,y軸,z軸建立空間直角坐標系D-xyz.利用向量垂直與數(shù)量積的關(guān)系即可得出.
(2)利用棱錐的體積計算公式即可得出.

解答 (1)證明:∵AD⊥DP,CD⊥平面ADPQ,∴DA,DP,DC兩兩垂直.以D為原點,
DA,DP,DC所在直線為x軸,y軸,z軸建立空間直角坐標系D-xyz.
不妨設(shè)AB=1,則D(0,0,0),B(1,0,1),
C(0,0,1),Q(1,1,0),P(0,2,0).
$\overrightarrow{PQ}$=(1,-1,0),
$\overrightarrow{PQ}$$•\overrightarrow{DQ}$=1-1+0=0,∵BA⊥面ADPQ,BA∥DC,
∴DC⊥面ADPQ,∴DC⊥PQ.
∴DC⊥PQ,DQ⊥PQ,又DC∩DQ=D,
∴PQ⊥平面DCQ.
(2)解:設(shè)AB=a,由題設(shè),QA⊥AD,QA⊥CD,知AQ為棱錐Q-ABCD的高,
∴棱錐Q一ABCD的體積V1=$\frac{1}{3}{a}^{3}$,
棱錐P-DCQ的體積V2=VC-DPQ=$\frac{1}{3}$a•$\frac{1}{2}$•3a•a=$\frac{1}{2}{a}^{3}$,
故棱錐Q-ABCD的體積:棱錐P-DCQ的體積=2:3.

點評 本題考查了線面垂直的判定與性質(zhì)定理、棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{\frac{2-x}{x-3}}$的定義域為[2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.給出以下結(jié)論:①f(x)=2-x在R上單調(diào)遞減;②$g(x)={log_2}\frac{1+x}{1-x}$是偶函數(shù);③F(x)=f(x)f(-x)(x∈R)是偶函數(shù);④f(x)=2|x|+1既不是奇函數(shù)也不是偶函數(shù).其中正確的是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.光線從點M (3,-2)照射到y(tǒng)軸上一點P(0,1)后,被y軸反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)a∈N+,且a<27,則(27-a)(28-a)(29-a)…(34-a)等于( 。
A.${A}_{27-a}^{8}$B.$A_{34-a}^{27-a}$C.$A_{34-a}^7$D.$A_{34-a}^8$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC.
(Ⅰ)證明:A1C⊥平面BED;
(Ⅱ)連結(jié)A1B,求二面角A1-DB-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在三棱錐A-BCD中,E,F(xiàn),G分別是AB,AC,BD的中點,若AD與BC所成的角是60°,那么∠FEG為60°或120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.(文)已知函數(shù)f(x)是奇函數(shù),當x>0時,$f(x)={3^{\frac{x}{2}}}$,則$f({{{log}_2}\frac{1}{4}})$等于( 。
A.-4B.-3C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)偶函數(shù)f(x)的定義域為R,當x∈[0,+∞)時,f(x)是增函數(shù),則f(-1),f(π),f(-3.14)的大小關(guān)系是(  )
A.f(π)>f(-3.14)>f(-1)B.f(π)>f(-1)>f(-3.14)C.f(π)=f(-3.14)<f(-1)D.f(π)<f(-1)<f(-3.14)

查看答案和解析>>

同步練習冊答案