考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)令n=1可求
a1=,當(dāng)n≥2時(shí),由6S
n=1-2a
n,得6S
n-1=1-2a
n-1,兩式相減可得遞推式,由此可判斷{a
n}是等比數(shù)列,可求a
n;
(2)易得c
n+1-c
n=log
a
n=2n+1,利用累加法可求得c
n,進(jìn)而可得
==(-),利用裂項(xiàng)相消法可求得
+
+…+
,進(jìn)而可得結(jié)論;
解答:
解:(1)當(dāng)n=1時(shí),6S
1=1-2a
1.解得
a1=;
當(dāng)n≥2時(shí),6S
n=1-2a
n①,6S
n-1=1-2a
n-1②,
①-②,化簡(jiǎn)得
=,
∴{a
n}是首項(xiàng)為
,公比為
的等比數(shù)列,
∴
an=•()n-1=
()2n+1.
(2)∵c
n+1-c
n=log
a
n=2n+1,
∴當(dāng)n≥2時(shí),c
n=(c
n-c
n-1)+(c
n-1-c
n-2)+…+(c
2-c
1)+c
1=(2n-1)+(2n-3)+…+3+0=n
2-1,
∴
==(-),
∴
++…+=(1-+-+-+…+-+-)=
(1+--)=-(+)<.
點(diǎn)評(píng):該題考查由遞推式求數(shù)列通項(xiàng)、等比數(shù)列的通項(xiàng)公式、數(shù)列求和,考查學(xué)生的運(yùn)算求解能力,裂項(xiàng)相消法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.