分析 先根據(jù)兩角和公式對函數(shù)解析式進行化簡,再根據(jù)正弦函數(shù)的性質(zhì)得出答案.
解答 解:∵y=sinx+cosx=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx)=$\sqrt{2}$(sinxcos$\frac{π}{4}$+cosxsin$\frac{π}{4}$)=$\sqrt{2}$sin(x+$\frac{π}{4}$),
∴對于函數(shù)y=$\sqrt{2}$sin(x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$≤x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,(k∈Z)可得:函數(shù)y=sinx+cosx,x∈R的單調(diào)遞增區(qū)間是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$](k∈Z),
故答案為[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$](k∈Z).
點評 本題主要考查兩角和公式及三角函數(shù)單調(diào)性問題.把三角函數(shù)化簡成y=Asin(ωx+φ)的形式很關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<a<b | B. | c<b<a | C. | b<a<c | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com