已知向量為非零向量,且
(1)求證:
(2) 若,求與的夾角。
(1)略
(2)
解析試題分析:(1)證明:因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/be/9/gqmu6.png" style="vertical-align:middle;" />,所以,,所以,。
(2)因?yàn),||
=,
所以,=,又,,故。
考點(diǎn):本題主要考查平面向量模的概念,向量的數(shù)量積及夾角計(jì)算,向量垂直的條件。
點(diǎn)評(píng):中檔題,涉及平面向量模的問(wèn)題,往往要“化模為方”,將實(shí)數(shù)運(yùn)算轉(zhuǎn)化成向量的數(shù)量積。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(Ⅰ)若與平行,求實(shí)數(shù)的值.
(Ⅱ)若與的夾角為鈍角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,,記,△ABC的面積為,且滿(mǎn)足.
(1)求的取值范圍;
(2)求函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,一2),點(diǎn)C滿(mǎn)足,其中,且.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡與橢圓交于兩點(diǎn)M,N,且以MN為直徑的圓過(guò)原點(diǎn),求證:為定值;
(3)在(2)的條件下,若橢圓的離心率不大于,求橢圓長(zhǎng)軸長(zhǎng)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知=,= ,=,設(shè)是直線(xiàn)上一點(diǎn),是坐標(biāo)原點(diǎn)
(1)求使取最小值時(shí)的;
(2)對(duì)(1)中的點(diǎn),求的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題13分)
向量=(+1,),=(1,4cos(x+)),設(shè)函數(shù)= (∈R,且為常數(shù)).
(1)若為任意實(shí)數(shù),求的最小正周期;
(2)若在[0,)上的最大值與最小值之和為7,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com