7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=8,S8=20,求此等差數(shù)列的首項(xiàng)a1和公差d.

分析 利用等差數(shù)列的通項(xiàng)公式列出方程組,由此能求出此等差數(shù)列的首項(xiàng)a1和公差d.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=8,S8=20,
∴$\left\{\begin{array}{l}{4{a}_{1}+\frac{4×3}{2}d=8}\\{8{a}_{1}+\frac{8×7}{2}d=20}\end{array}\right.$,
解得d=$\frac{1}{4}$,a1=$\frac{13}{8}$,
∴此等差數(shù)列的首項(xiàng)a1=$\frac{13}{8}$,公差d=$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的首項(xiàng)a1和公差d的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程是ρcosθ+ρsinθ=1,曲線D的參數(shù)方程是:$\left\{\begin{array}{l}{x=2-cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).
(1)求曲線C與曲線D的直角坐標(biāo)方程;
(2)若曲線C與曲線D相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校教職工年齡結(jié)構(gòu)分布如表,為了該校未來的發(fā)展,學(xué)校決定從這些教職工中采用分層抽樣方法隨機(jī)抽取50人參與“教代會(huì)”,則應(yīng)從35歲以下教職工中抽取的人數(shù)為(  )
年齡(歲)35歲及以下(35,50)50歲以上
人數(shù)(人)220180100
A.22B.18C.10D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在某次測量中得到的A樣本的莖葉圖如圖所示,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.47,45,56B.46,45,53C.45,47,53D.46,45,56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,長為4的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸正半軸和y正半軸上滑動(dòng),T為AB的中點(diǎn),∠OAB=75°,當(dāng)線段AB滑動(dòng)到A1B1位置時(shí),∠OA1B1=45°.線段在滑動(dòng)時(shí)點(diǎn)T運(yùn)動(dòng)到T1點(diǎn),則點(diǎn)T運(yùn)動(dòng)的路程為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)$\frac{1+\sqrt{3}i}{\sqrt{3}-i}$的共軛復(fù)數(shù)等于( 。
A.iB.-iC.$\sqrt{3}$+iD.$\sqrt{3}$-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合A={x|$\frac{1}{2}$≤2x≤4},B={x|lg(x-1)≤1},則A∩B=(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.當(dāng)x∈[-$\frac{π}{3}$,$\frac{2π}{3}$]時(shí),y=3-2sinx-2cos2x的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

雙曲線的漸近線方程為

查看答案和解析>>

同步練習(xí)冊(cè)答案