分析 根據(jù)題意建立直角平面坐標(biāo)系,得出△ABC是直角三角形,利用坐標(biāo)表示向量$\overrightarrow{AC}$、$\overrightarrow{CD}$,求出$\overrightarrow{AC}$•$\overrightarrow{CD}$即可.
解答 解:如圖所示,
△ABC中,A=30°,AB=3,$AC=2\sqrt{3}$,
∴cos30°=$\frac{3}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∴∠ABC=90°,
∴BC=$\frac{1}{2}$AC=$\sqrt{3}$;
又$\overrightarrow{AD}+2\overrightarrow{BD}=\overrightarrow 0$,
∴A(0,3),D(0,1),C($\sqrt{3}$,0);
∴$\overrightarrow{AC}$=($\sqrt{3}$,-3),$\overrightarrow{CD}$=(-$\sqrt{3}$,1),
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\sqrt{3}$×(-$\sqrt{3}$)-3×1=-6.
故答案為:-6.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{4\sqrt{3}}{3}$ | C. | 2 | D. | $\frac{8\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+3i | B. | -1-3i | C. | 1+3i | D. | 1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com