18.在△ABC中,A=30°,AB=3,$AC=2\sqrt{3}$,且$\overrightarrow{AD}+2\overrightarrow{BD}=\overrightarrow 0$,則$\overrightarrow{AC}.\overrightarrow{CD}$=-6.

分析 根據(jù)題意建立直角平面坐標(biāo)系,得出△ABC是直角三角形,利用坐標(biāo)表示向量$\overrightarrow{AC}$、$\overrightarrow{CD}$,求出$\overrightarrow{AC}$•$\overrightarrow{CD}$即可.

解答 解:如圖所示,

△ABC中,A=30°,AB=3,$AC=2\sqrt{3}$,
∴cos30°=$\frac{3}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∴∠ABC=90°,
∴BC=$\frac{1}{2}$AC=$\sqrt{3}$;
又$\overrightarrow{AD}+2\overrightarrow{BD}=\overrightarrow 0$,
∴A(0,3),D(0,1),C($\sqrt{3}$,0);
∴$\overrightarrow{AC}$=($\sqrt{3}$,-3),$\overrightarrow{CD}$=(-$\sqrt{3}$,1),
∴$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\sqrt{3}$×(-$\sqrt{3}$)-3×1=-6.
故答案為:-6.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)三棱錐的三視圖如下圖所示,則該幾何體的體積為( 。
A.1B.$\frac{4\sqrt{3}}{3}$C.2D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)z=-1+3i,則z的共軛復(fù)數(shù)為( 。
A.-1+3iB.-1-3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.下列是我國(guó)2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.

(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,求y關(guān)于t的回歸方程(系數(shù)精確到0.01);
(2)預(yù)測(cè)2018年我國(guó)生活垃圾無害化處理量.
附注:參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘法估計(jì)公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\frac{π}{4}<α<\frac{3π}{4},0<β<\frac{π}{4},cos(\frac{π}{4}+α)=-\frac{4}{5},sin(\frac{3π}{4}+β)=\frac{12}{13}$.
(1)求sin(α+β)的值;
(2)求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的程序框圖,運(yùn)行后輸出的結(jié)果為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.是否存在a,b,c使等式($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{a{n}^{2}+bn+c}{n}$對(duì)一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{an}滿足${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,則a2017=$\frac{12}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=|x-4|+|x-6|的最小值為( 。
A.2B.$\sqrt{2}$C.4D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案