設(shè)橢圓和雙曲線的公共焦點為,是兩曲線的一個交點,則=     .

試題分析:由題意可知,則解方程組,聯(lián)立方程組得到

故可知為直角,故答案為。
點評:本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時要注意公式的靈活運用,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負(fù)半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,成等差數(shù)列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓兩個焦點,為橢圓上一點且,則      (       )
A.3B.9C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的兩個焦點分別為,過作橢圓長軸的垂線交橢圓于點,
為等腰直角三角形,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的準(zhǔn)線方程為,則實數(shù)(   )
A.4B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線C1:(p >0)的焦點F恰好是雙曲線C2:(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知對稱中心為原點的雙曲線與橢圓有公共的焦點,且它們的離心率互為倒數(shù),則該橢圓的標(biāo)準(zhǔn)方程為___________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線x2=-y,的準(zhǔn)線方程是(   )。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案