【題目】設(shè)△ABC的三內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且b(sinB-sinC)+(c-a)(sinA+sinC)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若,,求△ABC的面積.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:
(1)利用正弦定理角化邊結(jié)合余弦定理可得;
(2)利用題意求得,,則三角形的面積為.
試題解析:
(Ⅰ)因?yàn)閎(sinB-sinC)+(c-a)(sinA+sinC)=0,
由正弦定理得b(b-c)+(c-a)(a+c)=0,∴b2+c2-a2=bc,
∴由余弦定理得:
∴在△ABC中,.
(Ⅱ)方法一:因?yàn)?/span>,且,∴
∴,∴tanB=1,在△ABC中,
又在△ABC中,由正弦定理得,∴.
∴△ABC的面積
.
方法二:因?yàn)?/span>,由正弦定理得,而,,
由余弦定理得b2+c2-bc=a2,∴
∴b2=2,即,
∴△ABC的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)分別為線段上的點(diǎn),.
(1)求證:平面平面;
(2)求證:當(dāng)點(diǎn)不與點(diǎn)重合時(shí),平面;
(3)當(dāng),時(shí),求點(diǎn)到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在正方體中中,
(1)求異面直線所成的角;
(2)求直線D1B與底面所成角的正弦值;
(3)求二面角大小的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(II)設(shè)動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)為圓心的圓,滿(mǎn)足此圓與相交于兩點(diǎn)(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(I)討論函數(shù)的單調(diào)性;
(II)若,證明:對(duì)任意 ,總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶(hù)居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶(hù)中,用分層抽樣的方法抽取10戶(hù)居民,則月平均用電量在[220,240)的用戶(hù)中應(yīng)抽取多少戶(hù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中且,.
(I)若,且時(shí),的最小值是-2,求實(shí)數(shù)的值;
(II)若,且時(shí),有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了名男生和名女生,這名畢業(yè)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績(jī)?cè)?/span>分以上者到甲部門(mén)工作;分以下者到乙部門(mén)工作,另外只有成績(jī)高于分才能擔(dān)任助理工作。
(1)如果用分層抽樣的方法從甲部門(mén)人選和乙部門(mén)人選中選取人,再?gòu)倪@人中選人,那么至少有一人是甲部門(mén)人選的概率是多少?
(2)若從所有甲部門(mén)人選中隨機(jī)選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫(xiě)出的分布列,并求出的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)詢(xún)問(wèn)某大學(xué)40名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
性別與讀營(yíng)養(yǎng)說(shuō)明列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | 16 | 8 | 24 |
不讀營(yíng)養(yǎng)說(shuō)明 | 4 | 12 | 16 |
總計(jì) | 20 | 20 | 40 |
(Ⅰ)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?
(Ⅱ)從被詢(xún)問(wèn)的16名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).
(注:,其中為樣本容量.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com