12.如圖,正三棱柱ABC-A1B1C1的各棱長均相等,D為AA1的中點,M,N分別是線段BB1和線段CC1上的動點(含端點),且滿足BM=C1N,當M,N運動時,下列結(jié)論中正確的序號為②③④.
①△DMN可能是直角三角形;②三棱錐A1-DMN的體積為定值;③平面DMN⊥平面BCC1B1;④平面DMN與平面ABC所成的銳二面角范圍為(0,$\frac{π}{4}$].

分析 ①,利用反證法思想說明△DMN不可能為直角三角形;
②,由△A1DM的面積不變,N到平面A1DM的距離不變,得到三棱錐A1-DMN的體積為定值;
③,由BM=C1N,得線段MN必過正方形BCC1B1的中心O,由DO⊥平面BCC1B1,可得平面DMN⊥平面BCC1B1;
④,平面DMN與平面ABC平行時所成角為0,當M與B重合,N與C1重合時,平面DMN與平面ABC所成的銳二面角最大.

解答 解:如圖,
對于①,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,∴△DMN不可能為直角三角形,故錯誤;
對于②,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,∴棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;
對于③,當M、N分別在BB1、CC1上運動時,若滿足BM=C1N,則線段MN必過正方形BCC1B1的中心O,而DO⊥平面BCC1B1,∴平面DMN⊥平面BCC1B1,故正確;
 對于④,當M、N分別為BB1,CC1中點時,平面DMN與平面ABC所成的角為0,當M與B重合,N與C1重合時,平面DMN與平面ABC所成的銳二面角最大,為∠C1BC,等于$\frac{π}{4}$.∴平面DMN與平面ABC所成的銳二面角范圍為(0,$\frac{π}{4}$],故正確,
∴正確的是②③④.
故答案為:②③④.

點評 本題考查了命題的真假判斷與應用,考查了棱柱的結(jié)構(gòu)特征,考查了空間想象能力和思維能力,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.在平行四邊形ABCD中,AB=3,AD=4,則$\overrightarrow{AC}•\overrightarrow{DB}$等于( 。
A.1B.7C.25D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)g(x)=$\frac{1}{xsinθ}$+lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx-$\frac{m-1}{x}$-lnx(m∈R).
(1)求θ的值;
(2)設(shè)h(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=sgn(lnx)-lnx的零點個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在如圖所示的幾何體中,四邊形ABCD為正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(1)求PD與平面PCE所成角的正弦值;
(2)在棱AB上是否存在一點F,使得平面DEF⊥平面PCE?如果存在,求$\frac{AF}{AB}$的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=2sin(ωx+φ)(0<ω<2π)的部分圖象如圖所示,點A($-\frac{π}{6}$,0),B、C是該圖象與x軸的交點,過點B作直線交該圖象于D、E兩點,點F($\frac{7π}{12}$,0)是f(x)的圖象的最高點在x軸上的射影,則$(\overrightarrow{AD}-\overrightarrow{EA})•(ω\overrightarrow{AC})$的值是( 。
A.2B.π2
C.2D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計眾數(shù)與中位數(shù)分別是( 。
A.12.5 11B.12.5 12C.12.5 13D.12.5 14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\overrightarrow{a}$=(3,$\sqrt{3}$),$\overrightarrow$=(1,0),則$\overrightarrow{a}$•$\overrightarrow$=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中是奇函數(shù),且最小正周期是π的函數(shù)是(  )
A.$y=cos({\frac{3π}{2}-2x})$B.y=|cosx|C.$y=sin({\frac{π}{2}+2x})$D.y=|sinx|

查看答案和解析>>

同步練習冊答案